DOI QR코드

DOI QR Code

Effect of Post-heat Treatment on Fatigue Strength of Thermally-Sprayed Stellite Alloy on Steel

스텔라이트 합금 용사 코팅의 피로 강도에 미치는 후열처리의 영향

  • Oh Jeong Seong (Dept. of Nuclear Materials Technology Development, Korea Atomic Energy Research Institute) ;
  • Komotori Jun (Dept. of Mechanical Engineering, Keio University) ;
  • Rhee Chang Kyu (Dept. of Nuclear Materials Technology Development, Korea Atomic Energy Research Institute)
  • 오정석 (한국원자력연구소, 원자력재료기술개발부) ;
  • ;
  • 이창규 (한국원자력연구소, 원자력재료기술개발부)
  • Published : 2005.04.01

Abstract

The effect of post-heat treatment on the coating characteristics and the fatigue strength of the gas flame thermally sprayed Stellite alloy coatings on $0.35\%$ carbon steel were investigated. The fatigue fracture surfaces of the heat treated samples were observed using SEM (Scanning Electron Microscopy). For as-sprayed samples, there was considerable scattering in the fatigue life due to the presence of the pores in the coating. After the post-heat treatment to improve the microstructural characteristics of the coating layer, the fatigue strength of the specimens was greatly improved, increasing with increasing the coating thickness. For the specimens with the 0.3mm and 0.5mm thick coating, the fatigue cracks originated in the substrate region just below the interface. On the contrary, for the specimens with the 1.0mm thick coating, they nucleated at the pore within the coating, and the fatigue strength was 2.6 times higher than that of the substrate due to the high fatigue resistance of the coating.

Keywords

References

  1. M. H. Staia, E. Ramos, A. Carrasquero, A. Roman, J. Lesage, D. Chicot and G. Mesmacque: Thin Solid Films, 377-378 (2000) 657 https://doi.org/10.1016/S0040-6090(00)01447-4
  2. Christopher A. Brown and Stephan Siegmann: International Journal of Machine Tools and Manufacture, 41 (2001) 1927 https://doi.org/10.1016/S0890-6955(01)00057-8
  3. Devicharan Chidambaram, Clive R. Clayton and Mitchell R. Dorfman: Surface and Coatings Technology, 192 (2005) 278 https://doi.org/10.1016/j.surfcoat.2004.08.072
  4. H. J. C. Voorwald, R. C. Souza, W. L. Pigatin and M.O.H. Cioffi: Surface and Coatings Technology, 190 (2005) 155 https://doi.org/10.1016/j.surfcoat.2004.08.181
  5. C. Godoy, M. M. Lima, M. M. R. Castro and J. C. Avelar- Batista: Surface and Coatings Technology, 188-189 (2004) 1 https://doi.org/10.1016/j.surfcoat.2004.07.123
  6. V. Stoica, R. Ahmed, T. Itsukaichi and S. Tobe: Wear, 257 (2004) 1103 https://doi.org/10.1016/j.wear.2004.07.016
  7. C. N. Machio, G. Akdogan, M. J. Witcomb and S. Luyckx: Wear, 258 (2005) 434 https://doi.org/10.1016/j.wear.2004.09.033
  8. T. Sahraoui, N. E. Fenineche, G. Montavon and C. Coddet: Journal of Materials Processing Technology, 152 (2004) 43 https://doi.org/10.1016/j.jmatprotec.2004.02.061
  9. J. U. Hwang, T. Ogawa and K. Tokaji: Fatigue Fract. Engng. Mater. Struct., 17-7 (1994) 839
  10. K. Padilla, A. Velasquez, J. A. Berrios and E. S. Puchi Cabrera: Surface and Coating Technology, 150 (2002) 151 https://doi.org/10.1016/S0257-8972(01)01447-5
  11. Y. H Shieh, J. T. Wang, H. C. Shih and S.T. Wu: Surface and Coating Technology, 58 (1993) 73 https://doi.org/10.1016/0257-8972(93)90176-O
  12. Y. Murakami: Effect of Small Defects and Nonmetallic Inclusions, Yokendo (Japan)
  13. J. J. Kruzic, J. M. McNaney, R. M. Cannon and R. O. Ritchie: Mechanics of Materials, 36 (2004) 57 https://doi.org/10.1016/S0167-6636(03)00031-0
  14. T. Takeshita: M.S thesis, Dept. of Mechanical Engineering, Keio University, Japan (1997)