• Title/Summary/Keyword: 용매 분해

Search Result 856, Processing Time 0.027 seconds

Studies on Partition and Extraction Equilibria of Metal-Dithiocarbamate Complexes(II). Metal Complexes of Ammonium Pyrrolidine Dithiocarbamate (Dithiocarbamate 금속착물의 분배 및 추출평형(제2보). Ammonium Pyrrolidine Dithiocarbamate의 금속착물)

  • Lee, Jong-Sun;Choi, Jong-Moon;Choi, Hee-Seon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.321-334
    • /
    • 1995
  • Basic studies for the effective extraction of ammonium pyrrolidine dithiocarbamate(APDC) complexes of Co(II), Ni(II) and Cu(II) into a solvent have been performed. The maximum distribution ratio was appeared (log D=1.3543) at pH 2.0 and the partition coefficient was 2.489 in the extraction of $4{\times}10^{-5}M$ APDC itself into chloroform. From the UV/visible spectra of metal-chelates in aqueous and organic solutions, the pH to form stable 1:2 metal-ligand complexes were Co(II):5.0, Ni(II):8.0 and Cu(II):8.0, respectively and only 1 minute was enough to be partitioned into the chloroform. Besides, the partition and extraction equilibria of the complexes were investigated by back-extracting $10.0{\mu}g/ml$ metal-chelates from the solvent into an aqueous solution beacuse of their slight solubilities in the aqueous solution. The distribution coefficients and extractabilities were as follows : at pH 6.5~8.5 of the aqueous solution, log D=2.834 : E(%)=99.9% for $Co(PDC)_2$, at pH 11, log D=5.699 E%=100 for $Ni( PDC)_2$, and at pH 6.0, log D=2.025 : E(%)=99.1% for $Cu(PDC)_2$. And the extraction and formation constants were log $K_{ex}=9.671$ : log ${\beta}_2=6.938$ for $Co(PDC)_2$, log $K_{ex}=9.646$ : log ${\beta}_2=7.071$ for $Ni( PDC)_2$, and log $K_{ex}=9.074$ : log ${\beta}_2=7.049$ for $Cu(PDC)_2$, respectively. From these results, an optimum extraction procedure can be constructed for the separative concentration of trace metallic ions, and the quantitative determination of them in advanced materials and environmental samples will be expected without any influence of sample matrixes.

  • PDF

Component Analysis and Antioxidant Effects of Youngia sonchifola Max. (고들빼기의 성분분석과 항산화효과)

  • Kim, Mee-Jeong;Park, Hee-Suk;Lee, Chang-Il;Kim, Sung-Hwan;Kim, Pil-Nyeon;Huh, Wan;Lee, Do-Yeong;Son, Jin-Chang
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.354-359
    • /
    • 2010
  • In the present study, we investigated the chemical composition, antioxidant activities and nitrite scavenging ability in leaf and root of Youngia sonchifolia Max. The leaf powder contained 4.3% of water, 53.9% of crude carbohydrate, 21.6% of crude protein, 3.5% of crude fat and 16.7% of crude ash. The root powder contained 4.8% of water, 65.9% of crude carbohydrate, 17.4% of crude protein, 3.2% of crude fat and 8.7% of crude ash. The major mineral elements both in leaf and root powder were potassium, calcium, and magnesium. Contents of unsaturated fatty acids were higher than those of saturated fatty acids both in leaf and root powder. Total polyphenol and flavonoid contents of methanol extract in leaf were 3,922.4 mg/100 g and 1,903.2 mg/100 g respectively. In comparison, total polyphenol and flavonoid contents of methanol extract in root powder were 1,898.4 mg/100 g and 359.8 mg/100 g. The antioxidative activities of several solvents extract of leaf and root powder were investigated by measuring electron-donating ability using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Of the each extracts, ethyl acetate extract of leaf and root powder showed relatively higher antioxidant activity; 94.3% in the leaf powder and 92.9% in the root powder. Nitrite scavenging ability was also highest in the ethyl acetate extract of leaf (45.4%) and root powder (28.8%). These results suggest that ethyl acetate extract of Youngia sonchifolia Max. can be used as a functional materials.

Biochemical Characterization of a Novel Thermostable Esterase from the Metagenome of Dokdo Islets Marine Sediment (독도 심해토 메타게놈 유래 신규 내열성 에스테라아제의 생화학적 특성규명)

  • Lee, Chang-Muk;Seo, Sohyeon;Kim, Su-Yeon;Song, Jaeeun;Sim, Joon-Soo;Hahn, Bum-Soo;Kim, Dong-Hern;Yoon, Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • A functional screen of 60,672 fosmid metagenomic clones amplified from marine sediment obtained from the Dokdo islets in Korea identified the gene EstES1, whose product, EstES1, displayed lipolytic properties on tributyrin-supplemented media. EstES1 is a 576 amino acid protein with a predicted molecular weight of 59.4 kDa including 37 N-terminal leader amino acids. EstES1 exhibited the highest sequence similarity (44%) to a carboxylesterase found in Haliangium ochraceum DSM14365. Phylogenetic analysis indicated that EstES1 belongs to a currently uncharacterized family of lipases. Within the conserved domain, EstES1 retains the catalytic triad that consists of the consensus penta-peptide motif, GESAG. EstES1 demonstrated a broad substrate specificity toward the long acyl group of ethyl esters (C2-C12), and its optimal activity was recorded toward p-Nitrophenyl butyrate (C4) at pH 9.0 and $40^{\circ}C$ (specific activity of 255.4 U/mg). The enzyme remained stable in the ranges of $60-65^{\circ}C$ and pH 9.0-10.5 and in the presence of methanol, ethanol, isopropanol, and dimethyl sulfoxide. Therefore, EstES1 has potential for use in industrial applications involving high temperature, organic solvents, and/or alkaline conditions.

The Physical and Thermal Properties Analysis of the VOC Free Composites Comprised of Epoxy Resin, and Dicyandiamide (VOC Free Epoxy Resin/Dicyandiamide 경화물의 배합비 변화에 따른 물리적 특성 및 열적특성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young IL;Kim, Young Chul;Lim, Choong-Sun
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2015
  • Volatile organic compounds (VOC) free adhesives have been interested by many scientists and engineers due to environmental regulations and the safety of industrial workers. In this work, a series of composites composed with bisphenol A epoxy resin used as solvent, dicyandiamide, and promoter were prepared to investigate the most appropriate molar ratio for steel-steel adhesion. The cured test specimen of each composite were measured with universal testing machine (UTM) to figure out mechanical properties such as tensile strength, Young’s modulus, and elongation. Furthermore, the lap shear strength of the specimen was tested with UTM while impact resistance was measured with Izod impact tester. The composite whose molar ratio of epoxy resin to curing agent is 1 : 0.9 (sample 3), showed better tensile strength, coefficient of elastic modulus, elongation, and impact strength than other composites did. The highest tanδ from dynamic mechanical analysis (DMA) was observed from sample 2 (epoxy resin: dicy = 1 : 0.7) while sample 3 showed slightly lower tanδ than that of 2. The morphology of the fracture surface of the cured composites from SEM showed that the number of subtle lines on the surface caused by impact increase as the contents of amine curing agent accrete. Furthermore, the viscosity change of sample 5 (epoxy resin: dicy = 1 : 1.3) was observed to confirm its storage stability.

Leaching of Chromium, Copper and Arsenic in Soils and Rapid Identification of CCA-Treated Woods Using Modified PAN Stain (CCA 목재방부제 설치지역 토양의 크롬.구리.비소 분포와 PAN 지시약을 이용한 CCA 방부목의 현장 검출방법 개발)

  • Abdelhafez, Ahmed A.;Awad, Yasser M.;El-Azeem, Samy A.M. Abd;Kim, Min-Su;Ham, Kwang-Joon;Lim, Kyoung-Jae;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.60-67
    • /
    • 2010
  • Although several studies have reported that Cr, Cu and As can leach from CCA-treated woods, few studies have been conducted on this topic in Korea. Therefore, this study was conducted to monitor Cr, Cu and As leaching from CCA-treated wood products and to develop a rapid identification method for CCA-treated wood products by using indicators such as PAN stain. Soil samples were collected at depths of 0-70 cm and wood samples were collected by thickness of wood layer. The soil and wood samples were then digested and analyzed for Cr, Cu and As concentrations using an atomic absorption spectrometer. The As and Cu concentrations decreased sharply with depth from 34.38 and 33.65 mg $kg^{-1}$ at 0-1 cm to 1.72 and 7.84 mg $kg^{-1}$ at 70 cm, respectively. In general, As was more mobile than Cr and Cu in the soil. For wood samples, the Cr, Cu and As concentrations were higher in the outer layer (0-0.5cm) than the inner layers (0.6-4.5cm). Evaluation of rapid identification methods revealed that 100% acetone with 0.1% PAN indicator was the best combination for detection of CCA-treated wood in the field.

Spent SCR Catalyst Leach Liquor Processed for Valuable Metals Extraction by Solvent Extraction Technique (SCR 폐촉매 침출액으로부터 용매추출법에 의한 유가금속의 추출)

  • Sola, Ana Belen Cueva;Jeon, Jong-Hyuk;Lee, Jin-Young;Parhi, Pankaj Kumar;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.55-61
    • /
    • 2020
  • Selective catalytic reduction (SCR) has been a promising technology to reduce the air pollution caused by nitrogen oxides (NOx) in several industries. The consumption of SCR catalysts increases every year as technology evolves, however those have a limited lifespan and usually end up in landfills after they deactivate. Currently, the most widely used catalyst for and stationary applications is V2O5-WO3/TiO2 which can contain around 50% wt V2O5 and 7-10% wt of WO3. The vast uses for both vanadium and tungsten and the worldwide interest in recycling methods that allow for the extraction of metals from secondary sources represent the major motivation for this research. The extraction time, pH dependency, extraction concentration studies were carried out using Aliquat 336 in exxol D80 as the extractant. It was determined that to optimize the extraction of both metals 30min of contact time with an organic phase containing 0.5mol/L of Aliquat 336 are needed at a slightly acidic pH (~5.0). In addition, counter McCabe-Thiele studies allowed us to determine that one stage is necessary for the removal of 99% of vanadium while 2 stages are necessary for the extraction of tungsten and counter current simulations proved that the theoretical approach was correct.

Establishment of Analytical Method for Methylmercury in Fish by Using HPLC-ICP/MS (고성능액체크로마토그래피-유도결합플라즈마 질량분석기를 이용한 어류 중 메틸수은 분석법 확립)

  • Yoo, Kyung-Yoal;Bahn, Kyeong-Nyeo;Kim, Eun-Jung;Kim, Yang-Sun;Myung, Jyong-Eun;Yoon, Hae-Seong;Kim, Mee-Hye
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.288-294
    • /
    • 2011
  • BACKGROUND: Methylmercury is analyzed by HPLC-ICP/MS because of the simplicity for sample preparation and interference. However, most of the pre-treatment methods for methylmercury need a further pH adjustment of the extracted solution and removal of organic matter for HPLC. The purpose of this study was to establish a rapid and accurate analytical method for determination of methylmercury in fish by using HPLC-ICP/MS. METHOD AND RESULTS: We conducted an experiment for pre-treatment and instrument conditions and analytical method verification. Pre-treatment condition was established with aqueous 1% L-cysteine HCl and heated at $60^{\circ}C$ in microwave for 20 min. Methylmercury in $50{\mu}L$ of filtered extract was separated by a C18 column and aqueous 0.1% L-cysteine HCl + 0.1% L-cysteine mobile phase at $25^{\circ}C$. The presence of cysteine in mobile phase and sample solution was essential to eliminate adsorption, peak tailing and memory effect problems. Correlation coefficient($r^2$) for the linearity was 0.9998. The limits of detection and quantitation for this method were 0.15 and $0.45{\mu}g/kg$ respectively. CONCLUSION: Result for analytical method verification, accuracy and repeatability of the analytes were in good agreement with the certified reference materials values of methylmercury at a 95% confidence level. The advantage of the established method is that the extracted solution can be directly injected into the HPLC column without additional processes and the memory effect of mercury in the ICP-MS can be eliminated.

On the Utilization of Inactive BHC isomers -Synthesis of 3-(2,4,5-trichlorophenyl)-1-methyl urea as a herbicide- (BHC 이성질체(異性質體)의 활용(活用)에 관(關)한 연구(硏究) -제초제(除草劑)로서 3-(2,4,5-trichlorophenyl)-1- methyl urea의 합성(合成)-)

  • Lee, Kyu-Seung;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.22 no.2
    • /
    • pp.109-122
    • /
    • 1979
  • Present study was carried out to reduce residual toxicity of BHC insecticides inherent in the organochlorine pesticides. For This end, r-isomer, the most potent insecticidal component among the BHC stereoisomers, was isolated and thus fortified by means of solvent precipitation. In parallel, 3-(2,4,5-trichlorophenyl)-1-methyl urea was prepared in good yield from technical BHC via 1,2,4-trichlorobenzene, 1,2,4,-trichloronitrobenzene, and 2,4,5-trichloroaniline. In addition, certain merit of the compound which make it possible to use as a herbicide is discussed. The results are summarized as follows; 1. Recrystallizing technical BHC from methanol-water binary solvent system, r-isomer was enriched to 49.7% at 95% recovery of r-isomer. 2. By partitioning technical BHC in 85% of methanolic solution into chloroform, r-isomer was fortified to 89.6% at 90.5% recovery of r-isomer. 3. Yield of 1,2,4-trichlorobenzene from technical BHC was greatly dependent upon concentration of alkalies and to less degree on the alkalies. 4. Surfactants, in particular cationic a quartenary ammonium salt, increased yield of 1,2,4-trichlorobenzene from technical BHC by alkaline hydrolysis. 5. Conversion of 1,2,4-trichlorobenzene to 2,4,5-trichloronitrobenzene was effected almost quantitatively utilizing $HNO_3-H_2SO_4$ nitrating agent at low temperature. 6. Yield of 91.4% was observed for the synthesis of 2,4,5-trichloroaniline by reducing 2,4,5-trichloronitrobenzene in the presence of iron turning and hydrochloric acid. 7. Overall yield based on BHC of 3-(2,4,5-trichlorophenyl)-1- methyl urea was 60.8%. 8. Inhibition effects, both germination and growth, 3-(2,4,5-trichlorophenyl)-1-methyl urea on several crops were found comparable to or more potent than those of $linuron{\circledR}\;and\;diuron{\circledR}$. In addition, it was also noted that susceptibility to the prepared compound depended upon the crops as well as specific part (shoots, roots) of the plant exposed to the chemicals.

  • PDF

Physicochemical properties of dried Saururus chinensis and the antioxidative activities of water and 70% ethanol extracts (덖음온도를 달리하여 전저리한 삼백초 건조물의 이화학적 특성 및 물과 70% 에탄올 추출물의 항산화효과)

  • Kang, Myung-Hwa;An, Su-Mi;Kim, Do-Hee
    • Journal of Nutrition and Health
    • /
    • v.52 no.4
    • /
    • pp.399-407
    • /
    • 2019
  • Purpose: This study was conducted to evaluate the physicochemical properties of different batches of Saururus chinensis using different roasting temperature that were dried at different using different roasting temperatures and their were determined the antioxidative activities of water and 70% ethanol extracts. Methods: Extracts were examined for the total phenolic acid content, the and flavonoids contents and the antioxidant properties, including DPPH radical scavenging activity, ABTs scavenging activity and, the reducing power. Results: Moisture content was significantly higher in the LSC and the crude ash content was significantly higher in the HSC. The crude protein content was higher in the LSC (although not significantly), and the crude fat and carbohydrate contents were higher in the HSC (although not significantly). The total phenolic content was lower in the samples extracted with water, but there was no significant difference. However, the extracts extracted with 70% ethanol at a high drying temperature were significantly higher. The low temperature and high drying temperature batches of Saururus chinensis were significantly higher in the samples extracted with 70% ethanol than those extracted with 70% ethanol. The total phenolic acid content, the total flavonoid content and the electron donating ability were highest in the ethanol extract of Saururuschinensis treated at a high temperature. However, the ABTs radical activity was highest in the water extracted, high-temperature treated Saururuschinensis. The 70% ethanol extract of high temperature roasted Saururuschinensis had the highest antioxidative activities of all the Saururuschinensis batches. Conclusion: The total phenolic acid contents, total flavonoid contents, electron donating activity and reducing power activity were highest in all the 70% ethanol extraction batches of the high-temperature treated samples.

Evaluation of antioxidant properties and oxidative stability of oregano seed solvent fraction (추출용매에 따른 오레가노 종자 분획물의 항산화 및 유지산화안정성 평가)

  • Lee, Hyun-Jong;Kim, Min-Ah;Hong, Sungsil;Kim, Mi-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.12-18
    • /
    • 2021
  • The in vitro antioxidant activity of oregano seed fractions, fractionizing with 80% ethanol, n-hexane, ethyl acetate, n-butanol, and water, was evaluated, and their effects on edible oils were determined in corn oil at 180℃. The ethyl acetate fraction had the highest radical-scavenging activity. The ferric reducing antioxidant power activity and total phenol content of the ethyl acetate fraction were determined as 6,130 µmol ascorbic acid equivalents/g extract and 770 µmol tannic acid equivalents/g extract, respectively, which were significantly higher than those of the other fractions (p<0.05). Primary and secondary oxidation products in corn oil added with the ethyl acetate fraction of oregano seed significantly decreased by 1.5 and 1.26 times, respectively, compared with those in the control groups. The major volatile ingredients in the ethyl acetate fraction of oregano seeds were determined to be carvacrol, thymoquinone, and 3-cyclopentylcyl-cyclopentan-1-one. Ethyl acetate is a suitable solvent for extracting antioxidant compounds from oregano seeds and can be used as a natural antioxidant.