• Title/Summary/Keyword: 요-피치-롤

Search Result 36, Processing Time 0.018 seconds

A Kalman filter with sensor fusion for indoor position estimation (실내 측위 추정을 위한 센서 융합과 결합된 칼만 필터)

  • Janghoon Yang
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.441-449
    • /
    • 2021
  • With advances in autonomous vehicles, there is a growing demand for more accurate position estimation. Especially, this is a case for a moving robot for the indoor operation which necessitates the higher accuracy in position estimation when the robot is required to execute the task at a predestined location. Thus, a method for improving the position estimation which is applicable to both the fixed and the moving object is proposed. The proposed method exploits the initial position estimation from Bluetooth beacon signals as observation signals. Then, it estimates the gravitational acceleration applied to each axis in an inertial frame coordinate through computing roll and pitch angles and combining them with magnetometer measurements to compute yaw angle. Finally, it refines the control inputs for an object with motion dynamics by computing acceleration on each axis, which is used for improving the performance of Kalman filter. The experimental assessment of the proposed algorithm shows that it improves the position estimation accuracy in comparison to a conventional Kalman filter in terms of average error distance at both the fixed and moving states.

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

Tutorial on the Principle of Borehole Deviation Survey - An Application of the Coordinate Transforms (시추공 공곡 측정의 원리 - 좌표계 변환의 응용)

  • Song, Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2020
  • To share an understanding of trajectory measurement in surveys using borehole, this tutorial summarizes the relevant mathematical principles of the borehole deviation survey based on coordinate transform. For uncased or open holes, calculations of the azimuth-deviation-tool face rotation using three-component accelerometer and magnetometer measurements are summarized. For the steel-cased holes, calculations are based on the time-derivative formula of the coordinate transform matrix; yaw-pitch-roll angles through time are mathematically determined by integrating the threecomponent angular velocity measurements from the gyroscope while also removing the Earth's rotation effect. Sensor and data fusion to increase the accuracy of borehole deviation survey is explained with an example of the method. These principles of borehole deviation surveys can be adapted for attitude estimation in air-borne surveys or for positioning in tunnels where global positioning system (GPS) signals cannot be accessed. Information on the optimization filter that must be incorporated in sensor fusion is introduced to help future research.

Investigation of Leksell GammaPlan's ability for target localizations in Gamma Knife Subthalamotomy (감마나이프 시상하핵파괴술에서 목표물 위치측정을 위한 렉셀 감마플랜 능력의 조사)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.901-907
    • /
    • 2019
  • The aim of this study is to evaluate the ability of target localizations of Leksell GammaPlan(LGP) in Gamma Knife Subthalamotomy(or Pallidotomy, Thalamotomy) of functional diseases. To evaluate the accuracy of LGP's location settings, the difference Δr of the target coordinates calculated by LGP (or LSP) and author's algorithm was reviewed for 10 patients who underwent Deep Brain Stimulation(DBS) surgery. Δr ranged from 0.0244663 mm to 0.107961 mm. The average of Δr was 0.054398 mm. Transformation matrix between stereotactic space and brain atlas space was calculated using PseudoInverse or Singular Value Decomposition of Mathematica to determine the positional relationship between two coordinate systems. Despite the precise frame positioning, the misalignment of yaw from -3.44739 degree to 1.82243 degree, pitch from -4.57212 degree to 0.692063 degree, and rolls from -6.38239 degree to 7.21426 degree appeared. In conclusion, a simple in-house algorithm was used to test the accuracy for location settings of LGP(or LSP) in Gamma Knife platform and the possibility for Gamma Knife Subthalamotomy. The functional diseases can be treated with Gamma Knife Radiosurgery with safety and efficacy. In the future, the proposed algorithm for target localizations' QA will be a great contributor to movement disorders' treatment of several Gamma Knife Centers.

Deep Sea Three Components Magnetometer Survey using ROV (ROV를 이용한 심해 삼성분자력탐사 방법연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2011
  • We conducted magnetic survey using IBRV (Ice Breaker Research Vessel) ARAON of KORDI (Korea Ocean Research and Development Institute), ROV (Remotely Operated Vehicle) of Oceaneering Co. and three components vector magnetometer, at Apr., 2011 in the western slope of the caldera of TA25 seamount, the Lau Basin, the southwestern Pacific. The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the deep sea magnetic survey, we made the nation's first small deep sea three components magnetometer of Korea. The magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively. ROV followed the planning tracks at 25 ~ 30 m above seafloor using the altimeter and USBL (Ultra Short Base Line) of ROV. The three components magnetometer measured the X (North), Y (East) and Z (Vertical) vector components of the magnetic field of the survey area. A motion sensor provided us the data of pitch, roll, yaw of ROV for the motion correction of the magnetic data. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON. The precision positions of magnetic data were merged by the post-processing of USBL data of ROV. The obtained three components magnetic data are entirely utilized by finding possible hydrothermal vents of the survey area.

Helicopter Pilot Metaphor for 3D Space Navigation and its implementation using a Joystick (3차원 공간 탐색을 위한 헬리콥터 조종사 메타포어와 그 구현)

  • Kim, Young-Kyoung;Jung, Moon-Ryul;Paik, Doowon;Kim, Dong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.57-67
    • /
    • 1997
  • The navigation of virtual space comes down to the manipulation of the virtual camera. The movement of the virtual cameras has 6 degrees of freedom. However, input devices such as mouses and joysticks are 2D. So, the movement of the camera that corresponds to the input device is 2D movement at the given moment. Therefore, the 3D movement of the camera can be implemented by means of the combination of 2D and 1D movements of the camera. Many of the virtual space navigation browser use several navigation modes to solve this problem. But, the criteria for distinguishing different modes are not clear, somed of the manipulations in each mode are repeated in other modes, and the kinesthetic correspondence of the input devices is often confusing. Hence the user has difficulty in making correct decisions when navigating the virtual space. To solve this problem, we use a single navigation metaphore in which different modes are organically integrated. In this paper we propose a helicopter pilot metaphor. Using the helicopter pilot metaphore means that the user navigates the virtual space like a pilot of a helicopter flying in space. In this paper, we distinguished six 2D movement spaces of the helicopter: (1) the movement on the horizontal plane, (2) the movement on the vertical plane,k (3) the pitch and yaw rotations about the current position, (4) the roll and pitch rotations about the current position, (5) the horizontal and vertical turning, and (6) the rotation about the target object. The six 3D movement spaces are visualized and displayed as a sequence of auxiliary windows. The user can select the desired movement space simply by jumping from one window to another. The user can select the desired movement by looking at the displaced 2D movement spaces. The movement of the camera in each movement space is controlled by the usual movements of the joystick.

  • PDF