• 제목/요약/키워드: 요트세일

검색결과 45건 처리시간 0.021초

요트 세일의 성능에 관한 수치해석 및 실험 (Evaluation of Yacht Sails Performance by CFD and Experiments)

  • 유재훈;안해성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.125-133
    • /
    • 2006
  • It is important to understand flow characteristics and performances of sails for both sailors and designers who want to have efficient thrust of yacht In this Paper the viscous flows around sail-like rigid wings, which are similar to main and jib sails of a 30 feet sloop, are calculated using a CFD tool. Lift, drag and thrust forces are estimated for various conditions of gap distance between the two sails and the center of effort of the sail system is obtained. Wind tunnel experiments are also carried out to measure aerodynamic forces acting on the sails system and to validate the computation. It is found that the combination of two sails produces the lift force larger than the sum of that produced separately by each sail and the gap distance between the two sails is an important factor to determine total lift and thrust.

예인수조 시험 및 VPP 계산에 의한 세일링 요트의 성능 추정 (Performance Predictions for Sailing Yacht by Towing Tests and VPP Calculation)

  • 유재훈;안해성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.116-124
    • /
    • 2006
  • A model test was carried out, in order to verify the hydrodynamic performances of public 30 feet class sailing yacht. In the initial design stage, the performances and the running attitude of sail yacht including the hull form and sail plan, appendages were estimated by VPP, from which made the representative test conditions. A new experiment system such as captive model device was composed because the running attitude could be changed by wind conditions. The test results show that the minimum resistance is generated in the heeling 20 degree. which was expected in the initial design stage. It is thought to be the useful informations that the keel has an effects on hydrodynamic forces and resistance differences between the upwind and the downwind condition. Also this paper is associated with the state-of-the-art of calculating sailing yacht performance as this is performed in velocity Prediction program (VPP) The VPP results shows a typical shape of a sailing yacht and the designed yacht has the best performance at 120 degree angle of true wind with 20 knots.

세일링 요트의 성능 추정에 관한 연구 (Performance Predictions for Sailing Yacht)

  • 유재훈;안해성
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.824-831
    • /
    • 2005
  • A model test was carried out, in order to verify the hydrodynamic performances of public 30 feet class sailing yacht. In the initial design stage, the performances and the running attitude of sail yacht including the hull form and sail plan, appendages were estimated by VPP, from which made the representative test conditions. A new experiment system such as captive model device was composed because the running attitude could be changed by wind conditions. The test results show that the minimum resistance is generated in the heeling 20 degree, which was expected in the initial design stage. It is thought to be the useful informations that the keel has an effects on hydrodynamic forces and resistance differences between the upwind and the downwind condition. Also this paper is associated with the state-of-the-art of calculating sailing yacht performance as this is performed in velocity prediction program (VPP). The VPP results shows a typical shape of a sailing yacht and the designed yacht has the best performance at 120 degree angle of true wind with 20 knots.

  • PDF

슬루프형 요트 세일의 성능 추정 (Evaluation of Sloop Sails Performance by CFD and Experiments)

  • 유재훈;박일룡;김진;안해성
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.832-839
    • /
    • 2005
  • It is important to understandflow characteristics and performances of sailsfor both sailors and designers who want to have efficient thrust of yacht. In this paper the viscous flows around sail-like rigid wings, which are similar to main and jib sails of a 30 feet sloop, are calculated using a CFD tool. Lift, drag and thrust forces are estimatedfor various conditions of gap distance between the two sails and the center of effort of the sail system is obtained. Wind tunnel experiments are also carried out to measure aerodynamic forces acting on the sail system and to validate the computation. It is found that the combination of two sails produces the lift force larger than the sum of that produced separately by each sail and the gap distance between the two sails is an important factor to determine total lift and thrust.

  • PDF

해양레저산업 동향 및 산업경쟁력 확보 방안에 관한 연구 (A Study on Recreational Boating Industry and its Competitiveness)

  • 강남선;김남훈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2013년도 춘계학술대회
    • /
    • pp.8-9
    • /
    • 2013
  • 본 연구는 세계 해양레저시장 20% 달성을 목표로 하고 있는 해양레저장비산업의 비전 및 핵심과제 달성을 위하여 해양레저선진국의 산업현황 및 해양레저시장의 동향 및 현황을 분석하고 산업의 경쟁력 확보를 위한 방안을 다음과 같이 제시하였다. 첫째, 국내 보급형 레저선박을 개발하여 증가하고 있는 국내 수요에 대응하여야 하며, 둘째, 국내 우수의 IT 기술을 활용한 IT기반 해양레저장비를 개발하여 국외 시장 진출 및 조선기자재 산업으로의 파급이 필요하다. 셋째, 해외시장 개척을 위한 고급형 모델 및 슈퍼요트와 관련된 기술을 개발하여 고부가가치 수요시장을 공략하여야 하고 넷째, 국내 실정에 맞는 마리나 모델을 개발하여 이미지 개선 및 국내 외 경쟁력 확보가 필요하다. 마지막으로 해양레저산업은 수요창출을 위한 공조체제가 반드시 필요하므로 해양레저문화의 발전이 반드시 병행되어야 한다. 해양레저산업은 경제동향 및 트렌드에 민감한 시장으로 관련된 기술개발과 시장을 둘러싼 국가 간 경쟁의 적극적인 대응마련과 단계적 전략 마련에 대한 지속적인 연구가 필요하다.

  • PDF

3D 휴먼 시뮬레이션을 통한 세일링 요트 윈치 배치 설계 연구 (Research on Arrangement Design for Sailing Yacht Winch using 3D Human Simulation)

  • 송연희;김동준;장성록;이유정;민경철
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.419-424
    • /
    • 2017
  • Unlike other leisure boats, a sailing yacht is propelled by wind power using sails that are controlled by the crew. Therefore, the ergonomic design of the equipment that the crew has to operate for sailing might be very important. However, it is difficult to find design rules and regulations for the equipment arrangement of a sailing yacht based on ergonomics. In this study, the arrangement design for the height and side plate angle of a winch for a sailing yacht was examined from an ergonomic design point of view. In a simulation, a Korean male in his 20s was selected as a human model for a grinder. The physical load was analyzed when he was operating a winch using a 3D human simulation. The lower back load showed the highest value when using the grinder at $90^{\circ}$ and $180^{\circ}$. Based on the results for the lower back load when using the grinder with various winch heights, it is suggested that the winch height from the cockpit floor to the top of the winch should be more than 40% of the height of the human operator. In addition, according to the results for the lower back load with various horizontal distances from the body, it is suggested that the side plate angle should be less than $16^{\circ}$.

신경망을 이용한 세일링 요트 리제너레이션 시스템의 배터리 충전 예측 (Battery charge prediction of sailing yacht regeneration system using neural networks)

  • 이태희;황우성;최명렬
    • 디지털융복합연구
    • /
    • 제18권11호
    • /
    • pp.241-246
    • /
    • 2020
  • 본 논문에서는 해양 전기추진 시스템과 딥러닝 알고리즘을 융합하여 전기추진 리제너레이션 시스템에서 DC/DC 컨버터 출력 전류 예측 및 리제너레이션 수행 시 배터리 충전량을 예측하기 위해 신경망 모델을 제안한다. 제안 된 신경망을 실험하기 위해 PCM의 입력 전압과 전류를 측정하고 시제품 PCM 보드의 출력 결과를 통해 데이터 세트를 구성하였다. 또한 불충분 한 데이터 세트에서 학습 결과를 향상시키기 위해 기존 데이터 세트를 데이터 피팅하여 학습을 진행하였다. 학습 후 신경망 모델의 데이터 예측 결과와 실제 측정 데이터의 차이를 그래프를 통해 확인하였다. 제안한 신경망 모델은 입력 전압과 전류 변화에 따른 배터리 충전량 예측을 효율적으로 보여주었다. 또한, DC/DC 컨버터를 구성하는 아날로그 회로의 특성변화를 신경망을 통하여 예측함으로써, 리제너레이션 시스템의 설계 시, 아날로그 회로의 특성을 고려해야 할 것으로 판단된다.

30ft급 요트 선체 주위의 점성유동 해석 (Viscous Flow Calculation around a 30 FT-class Sailing Yacht Hull)

  • 지혜련;김우전;박종환
    • 대한조선학회논문집
    • /
    • 제44권3호
    • /
    • pp.248-257
    • /
    • 2007
  • Turbulent flows around a sailing yacht hull were calculated using CFD technique. Grid system was generated by using Gridgen package and Fluent package was used to calculate flows around a 30ft-class yacht hull designed by MOERI. The drafts at starboard and port sides of a yacht. when the hull was heeled, were determined by adjusting the same displacement in the generated grid system. Pressure distribution on the sailing yacht hull was obtained and the changes of drag and side force by heel and leeway variation were shown. The flow calculations have been carried out both with and without free surface, and keel and rudder were included for both cases. It was found that the calculated results with free surface gives better agreement with experiments than those without free surface, although there are still a room for the improvement in correct prediction of forces.

40ft급 세일링 요트의 전산해석을 통한 구조안전성 평가 (Structural Safety Evaluation of 40 Feet Sailing Yacht by Computational Structure Analysis)

  • 지상현;노지선;강성원;김헌우;김명현
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.703-708
    • /
    • 2010
  • Recently, the development of the Marina port is determined as a national plan, and a variety of leisure boats and facilities on the field has been of critical interest. In particular, yachts are designed and produced mostly at small shipbuilding companies and research institute. The regulation and historic data, however, about the safety of structure are not readily available. Therefore, it is required to evaluate the strength of ship structure. This paper deals with the estimation of local strength of 40 feet sailing yacht by using finite element analysis. The forebody, mast and connection parts of a FRP yacht structure are evaluated. In addition, the results are compared with the regulation of Lloyd's register and Korean register.

리그변형을 고려한 세일 성능의 유체-구조 연성해석 (FSI Simulation of the Sail Performance considering Standing Rig Deformation)

  • 박세라;유재훈
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.421-430
    • /
    • 2018
  • The shape of a yacht sail made of thin fabric materials is easily deformed by wind speed and direction and it is affected by the deformation of the standing rig such as mast, boom, shrouds, stays and spreaders. This deformed sail shape changes the air flow over the sail, it makes the deformation of the sail and the rig again. To get a sail performance accurately these interactive behavior of sail system should be studied in aspects of the aerodynamics and the fluid-structure interaction. In this study aerodynamic analysis for the sail system of a 30 feet sloop is carried out and the obtained dynamic pressure on the sail surface is applied as the loading condition of the calculation to get the deformations of the sail shape and the rig. Supporting forces by rig are applied as boundary condition of the structure deformation calculations. And the characteristics of the air flow and the dynamic pressure over the deformed sail shape is investigated repeatedly including the lift force and the location of CE.