• 제목/요약/키워드: 요소 가수분해

Search Result 56, Processing Time 0.014 seconds

Evaluation of Urease Inhibition Activity of Zerumbone in vitro (제럼본의 요소가수분해효소 활성 억제 평가)

  • Woo, Hyun Jun;Lee, Min Ho;Yang, Ji Yeong;Kwon, Hye Jin;Yeon, Min Ji;Kim, Do Hyun;Moon, Cheol;Park, Min;Kim, Sa-Hyun;Kim, Jong-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.265-270
    • /
    • 2017
  • A key virulence factor for urinary tract pathogens is the enzyme urease, which catalyzes the hydrolysis of urea into ammonium ions and carbonic acid. Urease activity plays an important role in the pathogenesis of urinary tract infection. In this study, the inhibitory effect of zerumbone against six urease-producing bacteria (Klebsiella oxytoca, K. pneumoniae, Morganella morganii, Proteus mirabilis, P. vulgaris, and Staphylococcus saprophyticus) and their urease activities were evaluated. The results of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests showed that zerumbone had antibacterial effect against these six urease-producing bacteria. The MIC and MBC of zerumbone ranged from 0.5 to 2 mM and 1 to 4 mM, respectively. In the urease inhibitory assay, zerumbone showed better urease inhibition ($56.28{\pm}2.45-37.83{\pm}3.47%$) than the standard urease inhibitor, acetohydroxamic acid ($40.46{\pm}1.94-22.99{\pm}3.53%$). However, zerumbone did not affect the levels of the urease subunit. These results clearly indicated that zerumbone has antibacterial potential against urease-producing bacteria and possesses excellent bacterial urease inhibition properties.

Effect of pyroligneous acids on urease inhibition (요소분해 저해에 미치는 목초액의 영향 평가)

  • Park, Hyun Jun;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.173-178
    • /
    • 2017
  • This study was conducted to investigate the effect of pyroligneous acids on urea hydrolysis for the purpose of inhibiting ammonia volatilization during urea fertilizer application. Different types of synthetic urease inhibitors have been searched and developed, but their use is limited due to varying inhibition effects on soil urease, and environmental problems. In this study, the effect of pyroligneous acids, a natural substance, on urea hydrolysis in soil was evaluated by analyzing inhibition of urease activity. Pyroligneous acids inhibited plant urease and microbial urease activity, as well as soil urease with various urease complex. In addition, pyroligneous acids exhibited non-competitive urease inhibition effect through urease kinetics and inhibited urea hydrolysis in the soil. This study showed that pyroligneous acids treatment with urea fertilizer decreases the loss of urea fertilizer, improves the efficiency of nitrogen application on plant and reduces the amount of nitrogen fertilizers applied in soil.

Kinetic Studies on Enzymatic Hydrolysis of Cellulose(II) - Evaluation of Several Factors for Enzyme Adsorption and Initial Hydrolysis - (섬유소 가수분해반응에 관한 연구(II) - 효소흡착과 가수분해반응에 관여하는 여러인자의 영향 -)

  • Lee, Yong-Hun;Kim, Chul
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.167-174
    • /
    • 1991
  • Enzymatic cellulose hydrolysis depends on the several factors such as the structural features (CrI, particle size and surface area, etc.), the nature of cellulase enzyme system, the inhibitory effects of products, and enzyme deactivation. At the presence of products on the initial hydro- lysis rate of cellulose, cellobiose has more severe inhibitory effect than glucose. Othewise, the inhibition effect of products for adsorbed enzyme is related to the glucose and cellobiose conentration hyperbolically. Enzyme deactivation of FPA and ${\beta}-glucosidase$ were expressed by exponential decay profile.

  • PDF

Use of Phosphate Coated Urea to Decrease Ammonia Volatilization Loss from Direct Seeded Rice Field at Early Stage (건답(乾畓) 직파(直播) 논에서 초기(初期)의 암모니아 휘산(揮散) 경감(輕減)을 위한 인산(燐酸) 입힌 요소(尿素)의 효과(效果))

  • Jung, Yeong-Sang;Ha, Sang-Keun;Cho, Byung-Ok;Lee, Ho-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.8-14
    • /
    • 1996
  • Use of phosphate coated urea to decrease ammonia volatilization from directly seeded paddy under dryland condition at early stage was tested. Effect on urea hydrolysis was investigated through laboratory study comparing with use of thiourea, a urease inhibitor, under different water content. A field measurement of volitilized ammonia with phosphate-glycerol ammonia absorber was conducted for surface treated urea, phosphate coated urea, phosphate coated slow-release fertilizer and organic fertilizer. Through laboratory study, hydrolysis rate of phosphate coated urea at three days after treatment was lower than that of urea, however, the rate after one week was same. Thiourea addition retarted urea hydrolysis. By field measurement, ammonia volatilization was effectively reduced by use of phosphate coated urea.

  • PDF

Effect of Oxygen Plasma Treatment on Hydrophilicity and Biodegradability of Poly(butylenesuccinate) (산소플라즈마를 이용한 Poly(butylenesuccinate)의 표면친수성 향상이 생분해성에 미치는 영향)

  • 김수민;윤창상;박정희
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.47-50
    • /
    • 2001
  • 고분자의 생분해는 미생물에 의하여 분비되는 효소를 촉매로 하여 산화, 가수분해 등의 반응이 일어나 진행된다. 고분자의 생분해성에 영향을 미치는 요소는 다양하여 고분자 자체의 분자구조뿐만 아니라 분해되는 환경조건과도 관련되어있다. 특히 고분자를 분해시키는 미생물과 분해에 직접적인 촉매로 작용하는 효소는 대부분 수분이 있는 조건에서 활성이 크기 때문에, 수분의 접근성과 침투정도는 생분해에 중요한 요인으로 작용한다. (중략)

  • PDF

Reduced use of nitrogen fertilizer through retarded hydrolysis of urea by pyroligneous acid for Chinese cabbage cultivation (배추 재배 시 목초액에 의한 요소 가수분해 지연을 통한 질소비료 절감 효과)

  • Lee, Joo-Kyung;Park, Hyun Jun;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Urea is one of the most common nitrogen fertilizer, but nitrogen use efficiency by crop is low because of rapid hydrolysis of urea and loss of nitrogen in environments. Therefore, it is important to control the nitrogen release from nitrogen fertilizers. In this study, pyroligneous acid (PA) was used as a mean to inhibit urease in soil and prevent excessive nitrogen release from urea. Active ingredient in PA (AI) inhibited ammonification of urea in soil by reducing extracted ammonium nitrogen at 79.7% compared to the soil without PA. In order to evaluate the effect of PA on fertilization efficiency of urea, Chinese cabbage (Brassica campestris var. Pekinensis) was cultivated in soil treated with urea and PA both in pot and field. For PA treatment, half amount of urea was used compared to the amount of urea conventionally applied to Chinese cabbage. The PA treatment with half amount of urea resulted in similar Chinese cabbage biomass to the conventional urea application. Nitrogen concentration in Chinese cabbage was less in PA treatment indicating that Chinse cabbage effectively used nitrogen. Consequently, fertilization of urea with PA will reduce amount of fertilizer and frequency of application.

Hydrolysis of urea by immobilized urease membrane (urease고정막에 의한 urea의 가수분해)

  • Na, Won-Jae;Kim, Min;Kim, Byoung-Sik
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.49-52
    • /
    • 2004
  • 생체 내에서의 요소 형성은 단백질이 아미노산으로 분해되어 인체에 남은 요소는 오줌으로 배출된다. 그러나 고농도의 urea의 경우 단백질을 변형시키게 된다[1-2]. 이러한 고 농도의 urea를 단백질 공정을 통해서 제거시키는 기술이 최근의 투석 과학이다. 그러나 이러한 방법은 urea의 제거와 함께 많은 양의 단백질과 양이온이 유출 및 오염의 문제가 많이 발생하고 있다[3].(중략)

  • PDF

Hydrolysis of Urea by Immobilized Urease Membrane (우레아제(Urease) 고정막에 의한 요소(Urea)의 가수분해)

  • Kim, Byoung-Sik;Kim, Min;Heo, Kwang-Beom;Hong, Joo-Hee;Na, Won-Jae;Kim, Jae-Hun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • In this study, we examined the preparation and hydrolysis property of immobilized urease membrane to decompose harmful urea in the body and remove ammonia which was produced by its decomposition. Urease immobilized membrane was prepared by introducing anion-exchange group DEA into porous hollow-fiber membrane by radiation graft polymerization method, and immobilization of urease. When urease was immobilized at membrane introduced with anion-exchange group, the more increasing grafting rate, the more increasing immobilization amount. The result originates from the fact that a greater amount of protein was immobilized by forming a multilayer on the longer grafted chain. Meanwhile, the addition of the cross-linker was possible not only to suppress separation phenomenon produced during a washing process of immobilized urease membrane but also to enable the recycling of membrane. Urease Immobilized membrane with no separation phenomenon was prepared by cross-linking reaction for 5 h, and the hydrolysis rate of prepared urease immobilized membrane was over 98% and 50%, respectively, in 1 mol and 4 mol urea solutions.

A study of Succinyl trialanine p-nitroanilide hydrolytic activity in workers exposed to organic solvents (유기용제 취급 근로자들의 Succinyl trialanine p-nitroanilide 가수분해 효소 활성에 관한 연구)

  • Oh, Hae-Ju;Roh, Jae-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.1 s.41
    • /
    • pp.74-85
    • /
    • 1993
  • To measure the serum succinyl trialanine p-nitroanilide hydrolytic activity as new index of liver function in workers exposed to organic solvents, this study conducted 114 workers in department of shoe-making of shoes factories. The results obtained from this study were as follows : 1. The mean values of serum GOT, GPT, ${\gamma}GT$ in whole workers were $22{\pm}12.32,\;20{\pm}9.05,\;28{\pm}21.35IU/l$, respectively and the mean value of serum STN hydrolytic activity was $0.08{\pm}0.05$. 2. The serum STN hydrolytic activity was significantly higher for male (p<0.05) and there was no difference among the groups of age. 3. There was no difference in the groups by working hours but significant difference in persons who worked over 3 years or were exposed to toluene over 100ppm (p<0.05). 4. The correlation of the exposed dose of toluene and serum GOT, GPT, ${\gamma}GT$ and serum STN hydrolytic activity were statistically significant (r=0.027-0.518). 5. The exposed dose of toluene was most explainable variable and statistically significant among the factors affecting serum STN hydrolytic activity (p<0.05).

  • PDF

Development of hypothermic preservation solution for the human dermal fibroblast using protein hydrolysates (단백질 가수분해 물을 이용한 인간 피부 섬유아세포의 저온 보존액 개발)

  • Byoun, Soon-Hwi;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.312-320
    • /
    • 2009
  • Stable cell preservation is an essential factor in the regenerative medicine for cell therapies and transplantation of biologic materials. In this study, we studied to provide more stable hypothermic preservation by protection of cell damage during the preservation at $4^{\circ}C$. The result of searching for key components that have excellent efficacy in hypothermic preservation of cells, we have identified the fact that the hypothermic preservation adding protein hydrolysates such as yeast hydrolysate is far superior to others. All protein hydrolysates that are derived from animal, plant and microbe sources have superior efficacy, especially the peptides which have molecular weights under 10 kDa have the best efficacy among the components of protein hydrolysate. The protein hydrolysates prevented the decrease of ATP level in the cells caused by hypothermic environment and they inhibited the generation of ROS. Adding antioxidants and control agents of osmotic pressure were showed to have more superior efficacy in hypothermic preservation. Finally, KUL261 solution (DMEM/F12 1 : 1 medium, yeastolate 1%, $\alpha$-tocopherol $100{\mu}M$, dextran 2.5%), the preservation solution developed in this study, showed the best efficacy in both cell viability and cell growth more than other conventional preservation solutions. In conclusion, the improved hypothermic preservation solution that contains the protein hydrolysates as a key component provide the best preservation efficacy. It provides better efficacy than other preservation solutions and will contribute to both the development of regenerative medicine and global commercialization in this therapeutic field.