• Title/Summary/Keyword: 외피단열

Search Result 51, Processing Time 0.024 seconds

An Experimental Study on the Property of the Concrete with Glass Hollow Micro Sphere (유리질중공미소구체를 사용한 콘크리트의 특성에 관한 실험적 연구)

  • Kim, Sang-Heon;Kim, Se-Hwan;Park, Young-Shin;Jeon, Hyun-Gyu;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.160-166
    • /
    • 2014
  • In this research, as a measure of reducing energy lost through external wall, we used Glass Hollow Micro Sphere (HMS) to improve insulation performance to structural concrete. The following is a result of experimenting concrete using HMS. As usage of HMS, decrease in slump arose and it is judged as a need of using superplasticizer. Replacement ratio increasing more and more, amount of air showed tendency to decrease and compressive strength decreased for interfacial adhesion had not been formed. as replacement ratio and unit volume decreased. It appears that thermal conductivity decreased about 30.0~46.5 percent as compared with normal weight concrete.

The Study on Thermal Performance Evaluation of Building Envelope with VIPs

  • Jeon, Wan-Pyo;Kwon, Gyeong-Jin;Kim, Jin-Hee;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: The energy consumption in buildings has continuously increased in some countries and it reaches almost 25% of the total energy use in korea. Therefore there are various efforts to minimize energy consumption in buildings, and the regulations on building envelope insulation have been tightened up gradually. To satisfy the building regulation, the use of vacuum insulation panels(VIPs) is increasing. VIP is a high performance insulation materials, so that it can be thinner than conventional insulation material. When VIP is applied in a building, it may cause thermal bridge, which occurs due to very low thermal conductivity compared to other building materials and the envelope of VIPs. Method: This study designed the capsulized VIPs using conventional insulation for reduction of the thermal bridge. Then designed VIPs were applied to a wall. The linear thermal transmittance and the effective thermal conductivity were analyzed by HEAT2 simulation program for two dimensional steady-state heat transfer. The result compared with a wall with non-capsulized VIPs. Result: It analyzed that the wall with capsulized VIPs had lower linear thermal transmittance and reduced the difference of the effective thermal transmittance with one dimensional thermal transmittance compared to that of the wall with non-capsulized VIPs.

An Evaluation of Airtightness Performance and Analysis of Energy Savings Potential in Apartment Housing (공동주택의 기밀성능 평가 및 에너지 절감효과 분석)

  • Leigh, Seung-Bok
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.119-125
    • /
    • 1995
  • Since the using of heating energy associated with infiltration is significant in a building, the efforts to minimize the infiltration while ensuring minimum ventilation rates for various types of occupancy will be beneficial. In constrast to that many efforts have been made to reduce heat loss by improving thermal resistance of building envelope, little has been tried to reduce heat loss from infiltration. For achieving such an objective, measurement of air leakage rate will be pre-requisite as a diagnostic tool. A blower door system, a depressurization/pressurization method, was employed and it demonstrated a good potential for measuring airtightness performance of residential buildings. Based on the test results, annual energy savings for residential heating was estimated by reducing infiltration to a level of reasonably airtight or to a level of ASHRAE Standard 62-1989 for minimum ventilation.

  • PDF

A Study on the Building Energy Efficiency Rating Changes by Enhanced Thermal Insulation Performance of Building Envelope Standards in Apartment Houses (공동주택에서 외피단열성능기준 강화에 따른 건축물에너지 효율등급 변화에 관한 연구)

  • Cho, Yeong Uk;Park, Sun Hyo;Joung, Kwang Sub
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • This study aimed to compare the primary heating energy consumption of regional apartment houses based on the enhanced thermal insulation performance of building envelope standards. The difference of the heating energy consumption based on the enhanced thermal insulation performance of building envelope standards in the southern region, the largest regional difference in primary heating energy consumption, is $10.3kWh/(m^2{\cdot}year)$. The difference of the heating energy consumption based on the enhanced thermal insulation performance of building envelope standards in the central region is $8.0{\sim}8.5kWh/(m^2{\cdot}year)$ and that of the Jeju region is $0.5kWh/(m^2{\cdot}year)$. These energy consumption differences do not result in building energy efficiency ratings changing. The building energy efficiency ratings have the possibility to be changed.

Characterization of Insulation Finish Material Using Inorganic Wet Treatment Fly Ash (무기성 습식 처리 플라이애시를 활용한 단열 외피 마감재의 특성 평가)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Young;Kim, Deuak-Mo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.389-394
    • /
    • 2019
  • In this study, a functional inorganic insulation as TiO2 and inorganic wet fly ash were used to evaluate the physical performance and thermal environment of an exterior finish that can improve the thermal environment of a building. The performance evaluation of the finish was based on the KS F 4715 thin coating material and the thermal environment. When TiO2 was added, the physical performance was lowered at 10% or more, and the inorganic wet-treated fly ash increased the physical performance by 10%. In the thermal environmental evaluation, the surface temperature reduction effect of the inorganic wet-treated fly ash was low, but when used in combination with TiO2, it was effective to reduce the surface temperature and the internal temperature. As a result, the optimum combination of TiO2 and inorganic wet-treated fly ash for thermal environment control was found to be optimal when 5% of each mixture was used.

Thermal Performance of Wooden Building Envelope by Thermal Conductivity of Structural Members (목조건축물 구조부재의 열전도율에 따른 건물외피의 단열 성능)

  • Kim, Sughwan;Yu, Seulgi;Seo, Jungki;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.515-527
    • /
    • 2013
  • Building energy simulations which are mainly used in Korea have evaluated the building energy performance with the different thermal conductivity of construction materials. In order to evaluate the energy consumption accurately, the difference in thermal conductivity of the wood used in stud for wooden structure was confirmed from the each simulation. In addition, the thermal transmission of building members and the thermal bridge at the conjunction of building members according to thermal conductivity from each simulation programs were researched. The thermal conductivity of pine that has the largest variation among the energy simulations was applied to the thermal properties of studs in wooden structure. The maximum error between the maximum and minimum thermal transmission of roof, wall, and floor slab was $0.023W/m^2{\cdot}K$. Plus, that thermal bridge at Rafter junction on the roof, roof-wall joint, and floor slab-wall joint was $0.025W/m{\cdot}K$. The heat transfer image for changes in temperature and the heat exchange were analyzed by HEAT2 program. The distorted temperature lines were found around the insufficient insulated connection parts. It was predicted that the temperature at the distorted parts in the analyzed image was lower than that of the other portion of the other structures.

A study on the relationship between the existing building load for the advance ZEB certification system (ZEB 인증제 고도화를 위한 기존 건축물 부하별 연관성 연구)

  • Lee, Hangju;Maeng, Sunyoung;Kim, Insoo;Ahn, Jong-Wook
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • In accordance with the implementation of the Zero Energy Building Certification System, it for the activation and expansion of the private sector is being steadily upgraded. Also The government has set up a step-by-step mandatory roadmap until it is expanded to the private sector, starting with the public sector. We analyzed the energy requirements of existing buildings from 2016 to 2017 and the by load relationships of major factor. Of the existing buildings, 714 buildings in central and southern areas excluding residential buildings such as apartments and officetels were classified and their primary energy requirements were analyzed. As new design technologies are applied, the demand for energy from the passive side is steadily declining. In addition, there is a need to interpret various methods to improve the zero energy building certification standard in the point that the zero energy building pilot project is continuously carried out in relation to the activation of renewable energy supply.

Development and Commercialization of Warm Covers Using Natural Fabric (천연 소재를 이용한 보온덮개 개발 및 사업화 방안)

  • Choi, Ju-Hyun;Beak, Hyun-Kuk;Cho, Yun-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.227-233
    • /
    • 2018
  • The purpose of this study was to develop a warm cover for greenhouse with excellent thermal insulation and to propose ways of commercialization of the product. Feathers were used as filling materials because they formed the air layer to enhance insulation. Instead of downs for clothing or other textile products, we used disposed feathers. The developed product covers the outside of the greenhouse to keep the crops warm. It has multiple layers including feathers as filling materials, padding, inside fabric, heat insulation materials and outer fabric. It has proven to improve the insulation ratio. We developed other kinds of warm covers that are applicable to the inside of the greenhouse or the small houses in the greenhouse. Also, R&D system of educational industrial complex enables us to commercialize the products and building marketing strategies for them. This technology contributes to the expansion of energy-saving facilities for farmers, and it can serve the development and spread of various products utilizing feather.

The Effect of the Attached Glazing and Windbreak on the Thermal Performance and Air Tightness of Sliding window (덧유리 및 방풍재 적용을 통한 슬라이딩 창의 단열 및 기밀성능 개선효과 분석)

  • Bae, Min-Jung;Kang, Jae-Sik;Choi, Gyeong-Seok;Choi, Hyung-Joung
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2017
  • Purpose: Thermal performance and air tightness of window are improved for the building energy efficiency. As the deteriorated houses are increased, the improve measures with low cost and easy installation are developed in the energy performance of window. Attached glazing and windbreak can be easily applied to the window with low cost. In this paper, the effect of the attached glazing and windbreak on the thermal performance and air tightness of window is analyzed as the measure to improve performance of window. Method: Thermal transmittance of glazing is evaluated through WINDOW simulation according to thickness of attached glazing and air cavity. Based on the simulation results, thermal transmittance, air tightness and condensation resistance performance of four cases are tested according to Korea standards. One type of PVC sliding double window is chosen as the specimen. For the analysis on low performance of window, the outside of window is excluded in the PVC sliding double window. Result: This study shows that thermal performance of glazing can be increased by the application of attached glazing. Furthermore, lower thermal performance of glazing can obtain the higher effect of attached glazing. The application of attached glazing and windbreak can effect on increasing thermal performance and air tightness of window.

A study on the annual energy performance of apartment building with the equivalent U-value of envelope considering the effect of thermal bridges (공동주택 외피의 열교영향을 고려한 상당열관류율 및 연간 에너지소비성능 평가 연구)

  • Kim, Dong Su;Yoon, Jong Ho;Shin, U Cheul;Kwak, Hee Yul
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2012
  • The building envelope is important specially for saving energy consumption of residential buildings. but Apartment houses in Korea commonly have inside insulation system which have constantly arisen thermal bridges, the risk of heat loss, as a necessity. This study aims to evaluate integrated insulation performance according to the different shapes of external walls, adjacent to windows. The thermal performance analysis was carried out by Equivalent U-value and using the three-dimensional heat transfer computer simulation (TRISCO-RADCON), under nine different cases of comparing among three each of different bases(current standard model, 30percent energy saving model and 60percent energy saving model). The heating and the cooling load were also compared between two cases (standard U-value and Equivalent U-value) of three each of different bases, using the Building energy simulation which is based on DOE-2.1 analysis. As results, it turns out that if the Equivalent U-value is considered on the envelope analysis, the heat flow loss will be increasing more than the standard U-value, and if heat insulation property of the residential building reinforced rather than current, the rate of influences on the thermal bridges would be extremely expanded. In addition, it is shown that annual heating loads of the apartment house with applied Equivalent U-value substantially increased by more than 15 percent compared to those with the existing U-value, but annual cooling loads were negligibly affected.