• Title/Summary/Keyword: 외연적 유한요소해석

Search Result 69, Processing Time 0.021 seconds

Design of ceramics powder compaction process parameters (Part Ⅰ : Finite element analysis) (세라믹스 분말 가압 성형 공정 변수 설계(1부: 유한요소 해석))

  • Jung S. C.;Keum Y. T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • In order to simulate the powder compaction process and to assess the effects of packing randomness and particle arrangement 2-dimensional model of rod array compaction using quasi-random multiparticle array is introduced. The elastic modulus of porous ceramics is computed by the homogenization method. With 3 Al₂O₃ and 3 Al particles the compaction processes associated with the porosities are simulated by the explicit finite element method, based on the elastic modulus found by the homogenization method. The simulation results are compared with both previous analytical ones and experimental measurements. Finally, in order to find the relationship between the friction coefficient of powder particles and the relative density, the sensitivity analysis is performed.

The Analysis of Draw-bead Process by Using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드공정해석)

  • Jung, Dong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.604-609
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

A Study of Auto-body Panel Correction of Forming Analysis that Use Dynamic-extensive Finite Element Method (동적-외연적 유한요소법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.115-126
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Analyzed auto-body panel stomping process correction of forming using software called Dynaform using dynamic extensive method. Further, the simulated results for the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

Optimization of the Integrated Seat for Crashworthiness Improvement (일체형 시트의 충돌특성 개선을 위한 최적설계)

  • 이광기;이광순;박현민;최동훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.345-351
    • /
    • 2003
  • Due to increasing legal and market demands for safety in the automotive design process, the design of integrated seat is important more and mote because it should satisfy the conflict between stronger and lower weight for safety and environmental demands. In this study for crash simulations, the numerical simulations have been carried out using the explicit finite element program LS-Dyna according to the FMVSS 210 standard for safety test of seat. Since crash simulations are very time-consuming and a series of simulations that does not lead to a better result is very costly, the optimization method must be both efficient and reliable. As a result of that, statistical approaches such as design of experiments and response surface model have been successfully implemented to reduce time-consuming LS-Dyna simulations and optimize the safety and environmental demands together with nonlinear optimization algorithm. Design of experiments is used lot exploring the design space of maximum displacement and total weight and for building response surface models in order to minimize the maximum displacement and total weight of integrated seat.

Finite Element Analysis on Standing Wave Phenomenon of a Tire Considering Tread Pattern (트레드 패턴을 고려한 타이어의 스탠딩 웨이브 현상에 대한 유한 요소 해석)

  • Kim, Kee-Woon;Jeong, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2006
  • Each tire has a critical speed at which a standing wave phenomenon occurs along the circumferential direction. If the standing waves are formed, the tire temperature is rapidly increased and it leads to tire failure eventually. As the formation of the standing waves is closely related to the tire stiffness, the effect of the tread pattern needs to be studied numerically. The standing wave phenomenon of a tire model with tread pattern is predicted by an explicit finite element method. The critical speed of the tire with tread pattern is in a good agreement with the experiment and is $15{\sim}20\;km/h$ lower than that of the tire without tread pattern. The effects of the inflation pressure and the vertical load on the critical speed are also investigated by using the tire model with tread pattern.

The Development of Static-explicit Rigid-plastic Finite Element Method and Application to 2-dimension Sectional Analysis (2차원 단면해석을 위한 정적-외연적 강소성 유한요소법의 개발 및 적용)

  • Jung, Dong-Won;Lee, Seung-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study, revised rigid-plastic finite element method Will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

Explicit Nonlinear Finite Element Analysis for Flexural/Shear Behavior of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 휨/전단거동에 관한 외연적 비선형 유한요소해석 연구)

  • Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.771-776
    • /
    • 2020
  • In this study, the flexural/shear behavior characteristics of perfobond FRP-concrete composite beams using an FRP plate with perforated webs as formwork and reinforcement are analyzed through an analytical method. Compared with the existing experimental results, we have proved its usefulness and use it in future practice. When the nonlinearity is very large in this case, the nonlinear finite element analysis by an explicit method will be effective. The concrete damage plasticity (CDP) model adopted in this study is considered to be able to adequately simulate the nonlinear behavior of concrete, and the determination of several variable factors required in the model is compared with the experimental results and values used in the study. This recommendation will require review and adjustment for more diverse cases. The effect of the perfobond of the composite beam with perforated web is considered to be somewhat effective in terms of securing the initial stiffness, but in the case of the apex, it is considered that the cross-sectional loss and the effect of improving the bonding force should be properly arranged. The contact problem, such as slipping of the FRP plate and concrete, is considered to be one of the reasons that the initial stiffness is slightly larger than the test result, and the slightly difference from the experimental results is attributed to the separation problem between concrete and FRP after the peak.

Nonlinear Finite Element Analysis on Global and Distortional Buckling of Cold-Formed Steel Members (냉간성형강재의 전체좌굴 및 뒤틀림좌굴에 대한 비선형유한요소해석)

  • Kang, Hyun Koo;Rha, Chang Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper presents modelling approaches for the global and distortional buckling of cold-formed built-up steel sections using the finite element software packages, ANSYS and ABAQUS. Thin thickness of the cold-formed steel causes nonlinear behaviour due to local and distortional buckling, thus careful consideration is required in modelling for numerical analysis. Implicit static modelling using ANSYS provides unstable numerical results as the load approaches the limit point but explicit dyamic modelling with ABAQUS is able to display the behaviour even in post-buckling range. Meanwhile, axial load capacities obtained from the numerical analysis show higher values than the experimental axial capacities, due to eccentricity during the test. Axial capacities of the cold-formed steel obtained through numerical analysis requires reduction factor, and this paper suggests 0.88 for the factor.

Modification of the Sloan치s Substepping Scheme for the Numerical Stress Integration of Elasto-plastic Constitutive Models (탄소성 구성 모델의 수치 응력 적분을 위한 단계분할 절차에 관한 연구)

  • 김범상;정충기
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.129-140
    • /
    • 1998
  • Elasto-plastic finite element analysis of geotechnical boundary value problems necessitate the stress integration for the known strain increments. For the elasto-plastic constitutive model, the stress integration is generally achieved by numerical schemes, because analytical integration is impossible for general strain path. In this case, the accuracy of numerical stress integration has an important role on the overall accuracy of nonlinear finite element solution. In this study, the Sloan's substepping method which is one of explicit integration methods has been adopted and iris applicability has been checked. The unstability and inaccuracy of ifs results initiated from initial stress level were revealed. So. a new modified numerical integration method which employs the basic concept of modified Euler scheme for error control is proposed and accuracy and stability of the solutions are confirmed by triaxial test simulation.

  • PDF

Finite Element Analysis of RC Structures considering Bond Characteristics (부착특성을 고려한 RC구조물의 유한요소 해석)

  • 한상호
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.157-164
    • /
    • 1997
  • 일반적으로 콘크리트와 철근간의 경계면을 나타내는 유한요소법에는 균열의 부근에서 발생하는 부착열화 현상을 고려하지 않고 있다. 이것은 균열 부근에서 과도한 부착을 초래하고 , 국소 변형과 균열의 진전에도 영향을 준다. 본 연구에서는 철근콘크리트 구조물의 균열부근에서 일어나는 부착거동의 변화를 고려한 비선형 부착응력-미끄럼 모델을 제안하였다. 철근과 콘크리트간의 경계면에는 링크요소를 이용하였고, 링크의 특성은 철근을 가로지르는 균열의 상태에 따라 변하도록 조정하였다. 균열의 형성상태를 정량화하고, 부착거동을 두 포락선 1) 균열로부터 충분히 떨어진 위치에서의 부착상태를 모델링한 외연포락선, 2)횡균열면에 있어서의 부착상태를 모델링한 내연포락선의 사이에 변이시키기 위하여 비국소적 손상도 개념을 도입하였다. 이 방법의 유효성을 알아보기 위하여 편재하중을 받는 T형 교각의 실험 및 해석결과를 제시하였다. 제안된 모델의 결과를 실험결과와 비교하여 본 모델의 유용성을 검증하였다.