• Title/Summary/Keyword: 외압용기

Search Result 8, Processing Time 0.027 seconds

The Design, Structural Analysis and High Pressure Chamber Test of a Thick Pressure Cylinder for 2000 m Water Depth (수심 2000m 용 두꺼운 내압용기의 설계, 구조해석과 내압시험)

  • Choi, Hyeuk-Jin;Lee, Jae-Hwan;Kim, Jin-Min;Lee, Seung-Guk;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.144-153
    • /
    • 2016
  • This paper aims to demonstrate the design, structure analysis, and hydrostatic pressure test of the cylinder used in 2000m water depth. The cylinder was designed in accordance with ASME pressure vessel design rule. The 1.5 times safety factor required by the general rule was applied to the design of the cylinder, because ASME rule is so excessive that it is not proper to apply to the hydrostatic pressure test. The finite element analysis was conducted for the cylinder. The cylinder was produced according to the design. The hydrostatic pressure test was conducted at the hyperbaric chamber in KRISO. The results of finite element analysis(FEM) and those of the hydrostatic pressure test were almost the same, which showed that the design was exact and reliable.

Process of Structural Design and Analysis of Thin Pressure Cylinder for Shallow Sea Usage (천해용 얇은 외압 실린더의 설계와 해석 과정)

  • Lee, Jae-Hwan;Maring, Kothilngam;Kim, So-Ul;Oh, Taek-Chan;Park, Byoung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.201-207
    • /
    • 2016
  • In this paper, an aluminum pressure vessel (cylinder) for a 200 m water depth is designed and analyzed. Because of their lack of usage in the deep sea, only a few papers about pressure vessels subjected to external pressures have previously been published. Moreover, the high level of imported external-pressure-vessel products limits the academic pursuit. Yet, research on internal pressure vessels is widely available because of their broad usage at onshore. This paper presents the process of basic designing and modelling of pressure vessels using the design rules of American Standard of Mechanical Engineering (ASME) Section VIII Division 1. To promote understanding, finite element analysis (FEA) result of an existing sample cylinder which was not designed by ASME code is compared with the design obtained in this paper. Several methodologies are used for the finite element analysis, including rectangular, cylindrical, and axisymmetric coordinate, to attain an accurate stress result. Same dimensions except the thickness of the cylinder and loading condition of 0.200 MPa was given for the current study. Finally, a rigorous design procedure is added for the bolt and boundary conditions of the cylindrical body and its ends. The obtained stress level satisfies the allowable design stress value specified in the ASME code.

Assessment of a Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • Choi, Jong-Won;Cho, Dong-Keun;Lee, Yang;Choi, Heui-Joo;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.41-50
    • /
    • 2006
  • In this paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm-container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by $\sim20$ tons.

  • PDF

Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • CHO Dong-Keun;CHOI Jongwon;Lee Yang;CHOI Heui-Joo;LEE Jong-Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.153-162
    • /
    • 2005
  • In this Paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by ${\~}$20 tons.

  • PDF

The Analysis of Collapse Load of Thick Pressure Cylinder under External Hydrostatic Pressure (외압을 받는 두꺼운 원통형 내압용기의 붕괴하중 해석)

  • Lee, Jae-Hwan;Park, Byoungjae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.175-186
    • /
    • 2019
  • Number of studies on the buckling of thin cylindrical pressure vessels, such as submarine pressure hull and pipe with a large ratio of diameter/thickness, have been carried out in the naval and ocean engineering. However, research about thick cylinder pressure vessel has not been active except for the specific application in nuclear area. There are not many papers for the estimation of buckling and ultimate load capacity of thick cylinders for the deep sea usage. Thus, it is important to understand the theoretical bases of the buckling and collapse process and the derivation process of such loads for the proper design and structural analysis. The objective of this study is to survey the collapse behavior, to analyse and clarify the derivation procedure and to estimate the ultimate collapse load for thick cylinder by analyzing relevant books and papers. It is found that the yielding begins at the internal surface of the thick cylinder and plasticity develops from the internal surface to the external surface to generate collapse. Also the initial imperfection of cylinder develops flattening and consequently accelerates buckling and finally ultimate collapse. By comparing the collapse loads of aluminum thick cylinder by applying equations herein, it is shown that the equations analyzed are appropriate to obtain collapse load for thick cylinder.

Analysis of Key Parameters for Designing the Spent Nuclear Fuel Disposal Container in Korea (사용후핵연료 처분용기 설계를 위한 주요인자 분석)

  • Choi, Jong-Won;Cho, Dong-Keun;Choi, Hui-Ju
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2006
  • For the first step to develop a reference disposal container of spent fuel to be used in a deep geological repository, this paper examined safe dimensions of the disposal container on the points of nuclear criticality and radiation safety and mechanical structural safety and provided basic information for dimensioning the container and configuration of the container components, and establishing the favorable and safe disposal conditions. When the safety factor for stress due to the external loads (hydrostatic and swelling pressure) is taken as 2.0, the safe diameter of the filler material to provide enough container strength under the assumed external loads is found to be 112cm with 13cm spacing between inner baskets in PWR container. Also the thickness of the thinner section between the fuel basket and the surface of the cast insert is determined to be 150 mm. Regarding these dimensions of the container, the PWR fuel container is sketched to accommodate 4 square assemblies or 297 CANDU fuel 297 bundles (33 circle tubes x 9 stacks). However the top and bottom parts need to be checked again through the detail radiation shielding analysis with respects to the emplacement position and handling processes of the disposal container.

Nonlinear Strength Analysis of Laminated Composite Cylindrical Shells for the Optimum Laminate Structure (복합적층 원통형구각의 최적구조를 위한 비선형해석)

  • C.W.,Yum;J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.45-56
    • /
    • 1990
  • This study deals with the nonlinear strength analysis of laminated composite cylindrical shells to find the optimum structure of pressure vessel. By applying the F.E.M. using the 8-node degenerated Isoparametric shell element and Total Lagrangian formulation and being adopted Newton-Raphson method with incremental load as a solution scheme. the optimum structure is found from the viewpoint of minimum displacement. As a results of linear analysis on the 9 cases of laminated structure, $[50^{\circ}/-50^{\circ}]$ composition of the shell laminate give the minimum deflection. In case of the nonlinear analysis by applying Quadratic Failure Criteria on laminated combination $[{\theta}^{\circ}/-{\theta}^{\circ}]$, shell laminate structure of ${\theta}=50^{\circ}$ under external uniform pressure was founded as a optimum structure and ${\theta}=50^{\circ}$ for the case of external and axial loading combined.

  • PDF

Nonlinear Buckling Characteristics of Ring-stiffened Circular Cylinders under Uniform External Pressure (균일한 외압을 받는 원환보강 원통구조의 비선형 좌굴 특성)

  • Ahn, Dang;Kim, Soo-Young;Shin, Sung-Chul;Chung, Bo-Young;Koo, Youn-Hoe
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • This study aimed to analyze the nonlinear buckling of ring-stiffened circular cylinders under uniform external pressure, e.g. hydrostatic pressure, considering material nonlinearity and initial imperfection. In the present study, we analyzed the collapse pressure of pressure vessels using ANSYS Workbench, which is a framework of finite element methods. First, linear buckling analysis is performed to find collapse modes of the model. Second, scaling the first mode shape with small factor, geometric model is pre-deformed. And then, by analyzing the nonlinear buckling of the pre-deformed shape, the collapse pressure is estimated. To verify the validity of the analyses, we compared the results with Ross' experimental results. Finally, we applied it to ring-stiffened circular cylindrical shell of the pressure hull of a small submarine.