• Title/Summary/Keyword: 외부 표정

Search Result 142, Processing Time 0.025 seconds

Automatic Extraction of 3-Dimensional Road Information Using Road Pavement Markings (도로 노면표지를 이용한 3차원 도로정보 자동추출)

  • Kim, Jin-Gon;Han, Dong-Yeub;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.61-68
    • /
    • 2004
  • In this paper, we suggest an automatic technique to obtain 3-D road information in complex urban areas using road pavement markings. This method is composed of following three main steps. The first step is extracting the pavement markings from aerial images, the second one is matching the same pavement markings in two aerial images, and the last one is obtaining the 3-D coordinates of those using EOP(exterior orientation parameters) of aerial images. Here, we focus on the first and second step because the last step can be performed by using the well hewn collinearity condition equation. We used geometric properties and spatial relationships of the pavement markings to extract the lane line markings on the images and extracted arrow lane markings additionally using template matching. And then, we obtained 3-D coordinates of the road using relational matching for the pavement markings. In order to evaluate the accuracy of extraction, we did a visual inspection and compared the result of this technique with those measured by digital photogrammetric system.

  • PDF

A Study On the Accuracy Analysis of 3-Dimensional Position using Digital Image (수치 영상을 활용한 3차원 위치 정확도 해석)

  • Yeu, Bock-Mo;Sohn, Duk-Jae;Yom, Jae-Hong;Baek, Sang-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.159-172
    • /
    • 1995
  • This study aims to apply digital photogrammetric methods on the close range photogrammetry. To get a three dimensional position with digital photogrammetric method, scanning, image matching, and bundle adjustment are performed. Comparing the three dimensional position computed by digital photogrammetric methods with ground survey values, the errors can be detected. Analyzing the errors, it is possible to present a new digital photogrammetric method for the close range photogrammetry. Image matching method used in this study is area-based pixel unit and subpixel unit method. As a result of the study, three dimensional position error is 3.32mm and the error in the single coordinate axis direction is 0.76mm in pixel unit and in subpixel unit, respective error is 3.98mm and 0.73mm.

  • PDF

Combined Adjustment of Photogrammetric and Geodetic Observations for Accuracy Improvement (사진측량의 정확도향상을 위한 사진 및 측지관측값의 결합조정)

  • Jung, Young-Dong;Kang, Tae-Suck;Kwon, Hyon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.7 no.2
    • /
    • pp.35-43
    • /
    • 1989
  • The improvements of highly accurate and dense control networks are major requirements to carry out numerical surveying and a large scale mapping for cadastral renovation. In the most conventional photogrammetric solutions, adjusted control coordinates have been applied to block triangulations. However, this study, imploying real data and those of simulated as well, contributes to a simultaneously combined adjustment. It also contains such photogrammetric as photocoordinates and geodetic observations like distances, angles and hight differences. Its purpose is to introduce the improved results, despite it is not sufficient for the ground network. In addition, through the detection of gross error, more precise observational data can be selected for the better adjustment. All in all, the result of this study can be summarized as follows : First, even if the ground control points are not sufficient nor existed at all, the combination of pbotogrammetric and geodetic observations are improved its accuracy. Secondly, the case #2 is more accurate than that of #3, and the case #7 comes into close to that of #6.

  • PDF

Video Image Mosaicing Technique Using 3 Dimensional Multi Base Lines (3차원 다중 기선을 사용만 비데오 영상 모자이크 기술)

  • 전재춘;서용철
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.125-137
    • /
    • 2004
  • In case of using image sequence taken from a moving camera along a road in an urban area, general video mosaicing technique based on a single baseline cannot create 2-D image mosaics. To solve the drawback, this paper proposed a new image mosaicing technique through 3-D multi-baselines that can create image mosaics in 3-D space. The core of the proposed method is that each image frame has a dependent baseline, an equation of first order, calculated by using ground control point (GCP) of optical flows. The proposed algorithm consists of 4 steps: calculation of optical flows using hierarchical strategy, calculation of camera exterior orientation, determination of multi-baselines, and seamless image mosaics. This paper realized and showed the proposed algorithm that can create efficient image mosaics in 3-D space from real image sequence.

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery for Inaccessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • The paper presents several satellite models and satellite image decomposition methods for inaccessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in $1^{st}$, $2^{nd}$ and $3^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\Phi$(phi) correlated highly with positional parameters could be assigned to constant values. For inaccessible area, satellite images were decomposed, which means that two consecutive images were combined as one image, The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1st order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

Utilization of Ground Control Points using LiDAR Intensity and DSM (LiDAR 반사강도와 DSM을 이용한 지상기준점 활용방안)

  • Lim, Sae-Bom;Kim, Jong-Mun;Shin, Sang-Cheol;Kwon, Chan-O
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.37-45
    • /
    • 2010
  • AT(Aerial Triangulation) is the essential procedure for creating orthophoto and transforming coordinates on the photographs into the real world coordinates utilizing GCPs (Ground Control Point) which is obtained by field survey and the external orientation factors from GPS/INS as a reference coordinates. In this procedure, all of the GCPs can be collected from field survey using GPS and Total Station, or obtained from digital maps. Collecting GCPs by field survey is accurate than GCPs from digital maps; however, lots of manpower should be put into the collecting procedure, and time and cost as well. On the other hand, in the case of obtaining GCPs from digital maps, it is very difficult to secure the required accuracy because almost things at each stage in the collecting procedure should rely on the subjective judgement of the performer. In this study, the results from three methods have been compared for the accuracy assessment in order to know if the results of each case is within the allowance error: for the perceivable objects such as road boarder, speed bumps, constructions etc., 1) GCPs selection utilizing the unique LiDAR intensity value reflected from such objects, 2) using LiDAR DSM and 3) GCPs from field survey. And also, AT and error analysis have been carried out w ith GCPs obtained by each case.

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

Accuracy Assessment of Parcel Boundary Surveying with a Fixed-wing UAV versus Rotary-wing UAV (고정익 UAV와 회전익 UAV에 의한 농경지 필지경계 측량의 정확도 평가)

  • Sung, Sang Min;Lee, Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.535-544
    • /
    • 2017
  • UAVs (Unmanned Aerial Vehicle) are generally classified into fixed-wing and rotary-wing type, and both have very different flight characteristics each other during photographing. These can greatly effect on the quality of images and their productions. In this paper, the change of the camera rotation angle at the moment of photographing was compared and analyzed by calculating orientation angles of each image taken by both types of payload. Study materials were acquired at an altitude of 130m and 260m with fixed-wing, and at an altitude of 130m with rotary-wing UAV over an agricultural land. In addition, an accuracy comparison of boundary surveying methods between UAV photogrammetry and terrestrial cadastral surveying was conducted in two parcels of the study area. The study results are summarized as follows. The differences at rotation angles of images acquired with between two types of UAVs at the same flight height of 130m were significantly very large. On the other hand, the distance errors of parcel boundary surveying were not significant between them, but almost the same, about within ${\pm}0.075m$ in RMSE (Root Mean Square Error). The accuracy of boundary surveying with a fixed-wing UAV at 260m altitude was quite variable, $0.099{\sim}0.136m$ in RMSE. In addition, the error of area extracted from UAV-orthoimages was less than 0.2% compared with the results of the cadastral survey in the same two parcels used for the boundary surveying, In conclusion, UAV photogrammetry can be highly utilized in the field of cadastral surveying.

Detection of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image (KOMPSAT-3 위성영상의 RPC 보정을 위한 국가 통합기준점 탐지)

  • Lee, Hyoseong;Han, Dongyeob;Seo, Doochun;Park, Byungwook;Ahn, Kiweon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.829-837
    • /
    • 2014
  • The KOMPSAT-3 can acquire panchromatic stereo image with 0.7 m spatial resolution, and provides Rational Polynomial Coefficient (RPC). In order to determine ground coordinate using the provides RPC, which include interior-exterior orientation errors, its adjustment is needed by using the Ground Control Point (GCP). Several thousands of national Unified Control Points (UCPs) are established and overall distributed in the country by the Korean National Geographic Information Institute (NGII). UCPs therefore can be easily searched and downloaded by the national-control-point-record-issues system. This paper introduced the point-extraction method and the distance-bearing method to detect of UCPs. As results, the distance-bearing method was better detected through the experiment. RPC adjustment using this method was compared with that by only one UCP and GCPs using GPS. The proposed method was more accurate than the other method in the horizontal. As demonstrated in this paper, the proposed UCPs detection method could be replaced GPS surveying for RPC adjustment.

A Study on Self-Expression Improvement of Children through Orff Activities (유아의 자기표현능력 증진을 위한 오르프 음악활동의 적용)

  • Kwon, Se mi
    • Journal of Music and Human Behavior
    • /
    • v.6 no.1
    • /
    • pp.55-80
    • /
    • 2009
  • The objective of this study was to improve the self-expression of children through Orff activities. In this study, three (3) children from D day care center in Seoul who demonstrated withdrawn behaviors were chosen as research subjects, based on a self-expression test score of 50 points. The activities were conducted for 6 weeks, totaling fourteen (14) sessions, with each session being scheduled for forty (40) minutes. Across 14 sessions, the researcher conducted, analyzed and compared the self-expression scale of subjects, measured during the third and the last session. The researcher then qualitatively analyzed verbal and non-verbal self-expression behaviors of subjects by video recording the session. The analysis results shown by the study are as follows. First, the results of a quantitative analysis of the self-expression scale showed significant changes in self expression. Furthermore, the results of a qualitative analysis of verbal self-expression showed positive changes in self-perception and an increase in feelings of independence and activity than that of initial sessions.

  • PDF