Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.337-339
/
2003
얼굴인식은 얼굴 요소간의 지형적 특징보다 얼굴 영역 영상을 그대로 사용하여 인식하는 외관기반(appearance-based) 방법이 선호된다. 이때, 배경의 영향을 배제하기 위해 얼굴요소정보를 포함하는 최소 사각 영역을 사용하거나, 타원 마스크를 적용한다. 그러나, 이러한 전처리 방법은 개인별 외관특징으로써의 얼굴 윤곽 정보를 활용하지 못하게 한다. 본 논문에는 얼굴의 윤곽정보를 추출하기 위한 전처리 절차를 제안하고, ORL 얼굴 데이터에 대한 인식률 실험을 통해 제안하는 방법이 얼굴인식 성능을 크게 향상시킬 수 있음을 보인다.
In this paper, we describe a method that can recognize gestures and evaluate the degree of the gestures from sequential gesture images by using Gesture Feature Space. The previous popular methods based on HMM and neural network have difficulties in recognizing the degree of gesture even though it can classify gesture into some kinds. However, our proposed method can recognize not only posture but also the degree information of the gestures, such as speed and magnitude by calculating distance among the position vectors substituting input and model images in parametric eigenspace. This method which can be applied in various applications such as intelligent interface systems and surveillance systems is a simple and robust recognition algorithm.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.05a
/
pp.521-524
/
2013
In this paper, the algorithm that recognizes the gesture by configuring the feature information obtained through Improved Higher Order Local Correlation Features as low dimensional gesture symbol was described. Since the proposed method doesn't require a lot of computations compared to the existing geometric feature based method or appearance based methods and it can maintain high recognition rate by using the minimum information, it is very well suited for real-time system establishment.
This paper describes an algorithm that can recognize gestures constructing subspace gesture symbols with hybrid feature information. The previous popular methods based on geometric feature and appearance have resulted in ambiguous output in case of recognizing between similar gesture because they use just the Position information of the hands, feet or bodily shape features. However, our proposed method can classify not only recognition of motion but also similar gestures by the partial feature information presenting which parts of body move and the global feature information including 2-dimensional bodily motion. And this method which is a simple and robust recognition algorithm can be applied in various application such surveillance system and intelligent interface systems.
본 논문에서는 얼굴사진 기반 감정인식 심층망, 음성사운드를 기반한 감정인식 심층망을 결합한 앙상블 네트워크 구축을 위한 사전연구로서 얼굴사진 기반 감정을 인식하는 기존 딥뉴럴 네트워크 모델들을 입력 데이터 처리 방법에 따라 분류하고, 각 방법의 특성을 분석한다. 또한, 얼굴사진 외관 특성을 기반한 감정인식 네트워크를 여러 구조로 구성하고, 구성된 방법의 성능을 비교하여, 우수 성능을 보이는 네트워크를 선정하여 추후 앙상블 네트워크의 구성 네트워크로 사용하고자 한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.16
no.10
/
pp.2121-2128
/
2012
This paper proposed the real time face area detection using Wavelet transform and the strong detection algorithm that satisfies the efficiency of computation and detection performance at the same time was proposed. The detected face image recognizes the face by configuring the low-dimensional face symbol through the principal component analysis. The proposed method is well suited for real-time system construction because it doesn't require a lot of computation compared to the existing geometric feature-based method or appearance-based method and it can maintain high recognition rate using the minimum amount of information. In addition, in order to reduce the wrong recognition or recognition error occurred during face recognition, the input symbol of Hidden Markov Model is used by configuring the feature values projected to the unique space as a certain symbol through clustering algorithm. By doing so, any input face will be recognized as a face model that has the highest probability. As a result of experiment, when comparing the existing method Euclidean and Mahananobis, the proposed method showed superior recognition performance in incorrect matching or matching error.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.3
/
pp.341-348
/
2020
The ability to extract useful information from an image, such as the human eye, is an interface technology essential for AI computer implementation. The building recognition technology has a lower recognition rate than other image recognition technologies due to the various building shapes, the ambient noise images according to the season, and the distortion by angle and distance. The computer vision based building recognition algorithms presented so far has limitations in discernment and expandability due to manual definition of building characteristics. This paper introduces the deep learning CNN (Convolutional Neural Network) model, and proposes new method to improve the recognition rate even by changes of building images caused by season, illumination, angle and perspective. This paper introduces the partial images that characterize the building, such as windows or wall images, and executes the training with whole building images. Experimental results show that the building recognition rate is improved by about 14% compared to the general CNN model.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.12
/
pp.2647-2654
/
2011
In this paper, the algorithm that recognizes the gesture by configuring the feature information obtained through edge orientation histogram and principal component analysis as low dimensional gesture symbol was described. Since the proposed method doesn't require a lot of computations compared to the existing geometric feature based method or appearance based methods and it can maintain high recognition rate by using the minimum information, it is very well suited for real-time system establishment. In addition, to reduce incorrect recognition or recognition errors that occur during gesture recognition, the model feature values projected in the gesture space is configured as a particular status symbol through clustering algorithm to be used as input symbol of hidden Markov models. By doing so, any input gesture will be recognized as the corresponding gesture model with highest probability.
다중 객체 추적이란 컴퓨터 비전의 한 분야로, 주어진 비디오 시퀀스 내에서 관심 있는 객체들을 추적하는 것을 말한다. 다중 객체 추적 시스템은 감시 시스템, 사용자 행동 인식, 스포츠 중계, 비디오 회의와 같은 다양한 응용 분야에 핵심 기반 기술로 쓰이고 있어 그 중요성이 매우 크다. 본 논문은 감시 목적의 다중 객체를 추적하는 방법에 대하여 다룬다. 감시 시스템의 특성상, 객체의 외관이나 움직임 등에 대한 가정을 하기가 어렵다. 따라서 본 논문에서는 크기, 색, 형태 같은 객체의 단순하고 직관적인 외관 특성을 이용하면서도, 객체들끼리 부분적으로 혹은 완전히 겹쳐졌을 때에도 객체들의 위치를 적절히 추적할 수 있는 방법을 제안한다. 본 논문에서 제안하는 방법은 객체들의 경로에 대한 정보를 유지하는데 그래프 구조를 이용한다. 그래프를 확장하고, 제거하여 영상에 대한 정보를 추론한다. 크게 보면 객체들을 영역 레벨, 객체 레벨 두 단계에 걸쳐 추적한다. 영역 레벨에서는 각 객체들이 있을 수 있을만한 영역에 대한 가설을 세우고, 객체 레벨에서는 각 가설에 대한 검증을 한다. 제안된 방법은 직관적인 정보만을 이용하여 서로 다른 형태의 객체를 빠르게 추적할 수 있음을 보여준다. 다만 객체의 외관 정보만을 이용하였기 추적하기 때문에, 객체가 다른 객체에 의해 완전히 가려진 채 또다시 다른 객체와 겹쳐지면, 정확한 추적이 되지 않는다. 이를 해결하기 위해서는 객체가 겹쳐졌을 때, 그 관계에 대한 정보를 모아야 하는데 이는 향후 연구를 통해 해결하고자 한다.
Face recognition is one of the problems to be solved by appearance based matching technique. However, the appearance of face image is very sensitive to variation in illumination. One of the easiest ways for better performance is to collect more training samples acquired under variable lightings but it is not practical in real world. ]:n object recognition, it is desirable to focus on feature extraction or normalization technique rather than focus on classifier. This paper presents a simple approach to normalization of faces subject to directional illumination. This is one of the significant issues that cause error in the face recognition process. The proposed method, ICR(illumination Compensation based on Multiple Linear Regression), is to find the plane that best fits the intensity distribution of the face image using the multiple linear regression, then use this plane to normalize the face image. The advantages of our method are simple and practical. The planar approximation of a face image is mathematically defined by the simple linear model. We provide experimental results to demonstrate the performance of the proposed ICR method on public face databases and our database. The experimental results show a significant improvement of the recognition accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.