얼굴인식은 얼굴 요소간의 지형적 특징보다 얼굴 영역 영상을 그대로 사용하여 인식하는 외관기반(appearance-based) 방법이 선호된다. 이때, 배경의 영향을 배제하기 위해 얼굴요소정보를 포함하는 최소 사각 영역을 사용하거나, 타원 마스크를 적용한다. 그러나, 이러한 전처리 방법은 개인별 외관특징으로써의 얼굴 윤곽 정보를 활용하지 못하게 한다. 본 논문에는 얼굴의 윤곽정보를 추출하기 위한 전처리 절차를 제안하고, ORL 얼굴 데이터에 대한 인식률 실험을 통해 제안하는 방법이 얼굴인식 성능을 크게 향상시킬 수 있음을 보인다.
본 논문에서는 저차원 제스처 특징 공간에서 연속적인 인간의 제스처 형상을 이용하여 제스처를 인식하고 동작을 구체적으로 평가하는 방법에 대해 소개한다. 기존의 HMM, 뉴럴 넷을 이용한 제스처 인식방법은 주로 인간의 동작 패턴을 구분할 수 있지만 동작의 크기 정보를 이용하기엔 어려움이 있다. 여기서 제안한 방법은 연속적으로 촬영된 인간의 제스처 영상들을 파라메트릭 고유공간이라는 저차원 공간으로 표현하여 모델과 입력 영상간의 거리 계산으로써 포즈뿐만 아니라 동작에 관한 빠르기나 크기와 같은 구체적인 정보를 인식할 수 있다. 이 방법은 단순한 처리와 비교적 안정적인 인식 알고리즘으로 지적 인터페이스 시스템이나 감시 장비와 같은 여러 응용 시스템에 적용 될 수 있다.
본 논문에서는 개선된 고차상관 특징계수 통해서 얻어진 특징 정보를 제스처 심볼로 구성하여 인식하는 알고리즘에 대해 기술한다. 제안된 방법은 기존의 기하학적인 특징 기반 방법이나 외관기반 방법의 비해 많은 계산 량이 요구 되지 않고 최소한의 정보를 사용하고도 높은 인식률을 유지 할 수 있기에 실시간 시스템 구축에 매우 적합하다.
본 논문에서는 다중 혼합 특징 정보를 저 차원 제스처 심볼로 구성하여 제스처를 인식하는 알고리즘에 대해 기술한다. 기존의 기하학적인 특징 기반 방법이나 외관기반 방법에서는 깔, 다리의 위치나 몸의 형상 정보만을 특징 값으로 이용하기 때문에 유사한 신체 동작이나 신체 부위의 움직임에 따라 애매한 결과를 나타내었지만 제안한 방법은 신체의 어느 부위가 움직이는지를 나타내는 부분특징정보(partial feature information)와 전체적인 신체의 형상을 표현하는 전역특징정보(global feature information)를 이용함으로써 동작의 구분뿐만 아니라 유사한 동작을 인식할 수 있는 장점이 있다. 그리고 비교적 적은 계산량과 높은 인식률 때문에 감시 시스템이나 지적 인터페이스 시스템 같은 여러 응용 분야에 적용될 수 있다.
본 논문에서는 얼굴사진 기반 감정인식 심층망, 음성사운드를 기반한 감정인식 심층망을 결합한 앙상블 네트워크 구축을 위한 사전연구로서 얼굴사진 기반 감정을 인식하는 기존 딥뉴럴 네트워크 모델들을 입력 데이터 처리 방법에 따라 분류하고, 각 방법의 특성을 분석한다. 또한, 얼굴사진 외관 특성을 기반한 감정인식 네트워크를 여러 구조로 구성하고, 구성된 방법의 성능을 비교하여, 우수 성능을 보이는 네트워크를 선정하여 추후 앙상블 네트워크의 구성 네트워크로 사용하고자 한다.
본 논문은 Wavelet 변환을 이용한 실시간 얼굴 영역 검출을 제안하였으며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘을 제안하였다. 검출된 얼굴 영상은 주성분 분석을 통해 저차원 얼굴 심볼로 구성하여 얼굴을 인식한다. 제안된 방법은 기존의 기하학적인 특징 기반 방법이나 외관기반 방법의 비해 많은 계산 량이 요구 되지 않고 최소한의 정보를 사용하고도 높은 인식률을 유지 할 수 있기에 실시간 시스템 구축에 매우 적합하다. 또한 얼굴 인식 시 발생하는 잘못된 인식이나 인식 오차를 줄이기 위해 고유 공간상에 투영된 모델 특징 값을 군집화 알고리즘을 통해 특정한 기호로 구성하여 은닉마르코프 모델의 입력 기호로 사용하였다. 이렇게 함으로써 임의의 입력 얼굴은 확률 값이 가장 높은 해당 얼굴 모델로 인식하게 된다. 실험 결과 기존의 방식인 Euclidean과 Mahananobis방법 보다 제안한 방법이 잘못된 매칭이나 매칭 실패에서 우수한 인식 성능을 보였다.
인간의 눈과 같이 이미지에서 유용한 정보를 추출하는 기능은 인공지능 컴퓨터 구현에 필수적인 인터페이스 기술이다. 이미지에서 건물을 인식하여 추론하는 기술은 다양한 형태의 건물 외관, 계절에 따른 주변 잡음 이미지의 변화, 각도 및 거리에 따른 왜곡 등으로 다른 이미지 인식 기술 보다 인식률이 떨어진다. 지금까지 제시된 컴퓨터 비전(Computer Vision) 기반의 건물 인식 알고리즘들은 건물 특성을 수작업으로 정의하기 때문에 분별력과 확장성에 한계가 있다. 본 논문은 최근 이미지 인식에 유용한 딥러닝의 CNN(Convolutional Neural Network) 모델을 활용하는데 건물 외관에 나타나는 변화, 즉 계절, 조도, 각도 및 원근에 의해 떨어지는 인식률을 향상시키는 새로운 방법을 제안한다. 건물 전체 이미지와 함께 건물의 특징을 나타내는 부분 이미지들, 즉 창문이나 벽재 이미지의 데이터 세트를 함께 학습시키고 건물 인식에 활용함으로써 일반 CNN 모델 보다 건물 인식률을 약 14% 향상됨을 실험으로 증명하였다.
본 논문에서는 에지 방향성 히스토그램과 주성분 분석을 통해서 얻어진 특징 정보를 저차원 제스처 심볼로 구성하여 제스처를 인식하는 알고리즘에 대해 기술한다. 제안된 방법은 기존의 기하학적인 특징 기반 방법이나 외관기반 방법에 비해 많은 계산 량이 요구 되지 않고 최소한의 정보를 사용하고도 높은 인식률을 유지 할 수 있기에 실시간 시스템 구축에 매우 적합하다. 또한 제스처 인식 시 발생하는 잘못된 인식이나 인식 오차를 줄이기 위해 객체 공간상에 투영된 모델 특징 값을 은닉마르코프 모델의 입력 기호로 이용되기 위해서 군집화 알고리즘을 통해 특정한 상태 기호로 구성한다. 이렇게 함으로써 임의의 입력 제스처는 확률 값이 가장 높은 해당 제스처 모델로 인식하게 된다.
다중 객체 추적이란 컴퓨터 비전의 한 분야로, 주어진 비디오 시퀀스 내에서 관심 있는 객체들을 추적하는 것을 말한다. 다중 객체 추적 시스템은 감시 시스템, 사용자 행동 인식, 스포츠 중계, 비디오 회의와 같은 다양한 응용 분야에 핵심 기반 기술로 쓰이고 있어 그 중요성이 매우 크다. 본 논문은 감시 목적의 다중 객체를 추적하는 방법에 대하여 다룬다. 감시 시스템의 특성상, 객체의 외관이나 움직임 등에 대한 가정을 하기가 어렵다. 따라서 본 논문에서는 크기, 색, 형태 같은 객체의 단순하고 직관적인 외관 특성을 이용하면서도, 객체들끼리 부분적으로 혹은 완전히 겹쳐졌을 때에도 객체들의 위치를 적절히 추적할 수 있는 방법을 제안한다. 본 논문에서 제안하는 방법은 객체들의 경로에 대한 정보를 유지하는데 그래프 구조를 이용한다. 그래프를 확장하고, 제거하여 영상에 대한 정보를 추론한다. 크게 보면 객체들을 영역 레벨, 객체 레벨 두 단계에 걸쳐 추적한다. 영역 레벨에서는 각 객체들이 있을 수 있을만한 영역에 대한 가설을 세우고, 객체 레벨에서는 각 가설에 대한 검증을 한다. 제안된 방법은 직관적인 정보만을 이용하여 서로 다른 형태의 객체를 빠르게 추적할 수 있음을 보여준다. 다만 객체의 외관 정보만을 이용하였기 추적하기 때문에, 객체가 다른 객체에 의해 완전히 가려진 채 또다시 다른 객체와 겹쳐지면, 정확한 추적이 되지 않는다. 이를 해결하기 위해서는 객체가 겹쳐졌을 때, 그 관계에 대한 정보를 모아야 하는데 이는 향후 연구를 통해 해결하고자 한다.
얼굴인식은 외관기반(appearance-based) 매칭기법으로 풀어야 할 문제 중의 하나이다. 그러나, 얼굴영상의 외관은 조명 변화에 매우 민감하다. 얼굴인식 성능을 향상시키기 위해서는 다양한 조명 아래에서 다양한 학습 데이타를 수집해야 하나, 실제로는 데이타 수집이 용이하지 않다. 따라서, 성능향상을 위해서 다양한 데이타를 학습시키는 것 보다 다양한 조건의 데이타를 정규화 하는 기법에 주목하는 것이 바람직하다. 본 논문에서는 방향성 조명 아래에서 취득한 얼굴영상을 정규화 할 수 있는 간단한 방법을 제안한다. 조명 문제는 얼굴인식 시스템에서 오류를 일으키는 가장 중요한 요인중 하나이다. 제안하는 방법을 ICR(illumination Compensation based on Multiple Linear Regression)이라 명명하였다. 본 방법에서는 다중회귀분석 모델을 사용하여 얼굴영상의 화소 밝기 갈 분포에 가장 잘 맞는 평면을 찾은 후 이 평면을 이용하여 얼굴영상을 정규화 한다. 제안하는 방법의 장점은 간단하고 실용적이며, 얼굴영상의 밝기 값 분포에 대한 평면 근사가 선형모델에 의해 수학적으로 정의된다는 점이다. 얼굴인식에서 제안하는 방법의 성능 향상을 보여주기 위해 공개 및 자체 구축 데이타 베이스에 대한 실험 결과를 제시한다. 실험 결과 두드러진 얼굴인식 성능 향상을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.