• Title/Summary/Keyword: 완화 기법

Search Result 643, Processing Time 0.029 seconds

Case study of Music & Imagery for Woman with Depression (우울한 내담자를 위한 MI(Music & Imagery) 치료사례)

  • Song, In Ryeong
    • Journal of Music and Human Behavior
    • /
    • v.5 no.1
    • /
    • pp.67-90
    • /
    • 2008
  • This case used MI techniques that give an imagery experience to depressed client's mental resource, and that makes in to verbalism. Also those images are supportive level therapy examples that apply to positive variation. MI is simple word of 'Music and Imagery' with one of psychology cure called GIM(Guided Imagery and Music). It makes client can through to the inner world and search, confront, discern and solve with suitable music. Supportive Level MI is only used from safety level music. Introduction of private session can associate specification feeling, subject, word or image. And those images are guide to positive experience. The First session step of MI program is a prelude that makes concrete goal like first interview. The Second step is a transition that can concretely express about client's story. The third step is induction and music listening. And it helps to associate imagery more easily by used tension relaxation. Also it can search and associate about various imagery from the music. The last step is process that process drawing imagery, talking about personal imagery experience in common with therapist that bring the power by expansion the positive experience. Client A case targets rapport forming(empathy, understanding and support), searching positive recourse(child hood, family), client's emotion and positive support. Music must be used simple tone, repetition melody, steady rhythm and organized by harmony music of what therapist and client's preference. The client used defense mechanism and couldn't control emotion by depression in 1 & 2 sessions. But the result was client A could experience about support and understanding after 3 sessions. After session 4 the client had stable, changed to positive emotion from the negative emotion and found her spontaneous. Therefore, at the session 6, the client recognized that she will have step of positive time at the future. About client B, she established rapport forming(empathy, understanding and support) and searching issues and positive recognition(child hood, family), expression and insight(present, future). The music was comfortable, organizational at the session 1 & 2, but after session 3, its development was getting bigger and the main melody changed variation with high and low of tune. Also it used the classic and romantic music. The client avoids bad personal relations to religious relationship. But at the session 1 & 2, client had supportive experience and empathy because of her favorite, supportive music. After session 3, client B recognized and face to face the present issue. But she had avoidance and face to face of ambivalence. The client B had a experience about emotion change according depression and face to face client's issues After session 4. At the session 5 & 6, client tried to have will power of healthy life and fairly attitude, train mental power and solution attitude in the future. On this wise, MI program had actuality and clients' issues solution more than GIM program. MI can solute the issue by client's based issue without approach to unconsciousness like GIM. Especially it can use variety music and listening time is shorter than GIM and structuralize. Also can express client's emotion very well. So it can use corrective and complement MI program to children, adolescent and adult.

  • PDF

Effects of Rye Silage on Growth Performance, Blood Characteristics, and Carcass Quality in Finishing Pigs (호맥 사일리지의 급여기간이 비육돈의 생산성, 혈액 성상 및 도체특성에 미치는 영향)

  • Shin, Seung-Oh;Han, Young-Keun;Cho, Jin-Ho;Kim, Hae-Jin;Chen, Ying-Jie;Yoo, Jong-Sang;Whang, Kwang-Youn;Kim, Jung-Woo;Kim, In-Ho
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.392-400
    • /
    • 2007
  • This experiment was conducted to evaluate effects of various periods of rye silage feeding on the growth performance, blood characteristics, and carcass quality of finishing pigs. A total of sixteen [($Landrace{\times}Yorkshire{\times}Duroc$)] pigs (90.26 kg in average initial body weight) were tested in individual cages for a 30 day period. Dietary treatments included 1) CON (basal diet), 2) S10 (basal diet for 20 days and 3% rye silage for 10 days) 3) S20 (basal diet for 10 days and 3% rye silage for 20 days) and 4) S30 (3% rye silage for 30 days). There were no significant differences in the ADG and gain/feed ratio among the treatments(p>0.05), however the ADFI was higher in pigs fed the CON diet than with pigs fed diets with rye silage (p<0.05). The DM digestibility was higher with the S20 diet than with the S30 diet (p<0.05). With regard to blood characteristics, pigs fed rye silage had a significantly reduced cortisol concentration compared to pigs fed the CON diet (p<0.05). The backfat thickness was higher with the CON diet than with the S20 or S30 diets (p<0.05). Regarding the fatty acid contents of the leans, the C18:0 and total SFA were significantly higher with the CON diet than with the other diets (p<0.05). However, the C18:1n9, total MUFA and UFA/SFA levels were significantly lower with the CON diet than the other diets (p<0.05). Regarding the fatty acid contents of fat, the levels of C18:1n9 and MUFA were similar with the S20 and S30 diets, however, these levels were higher than with the CON or S10 diets (p<0.05). In conclusion, feed intake and DM digestibility were affected by rye silage, and the cortisol concentration, backfat thickness and fatty acid composition of pork were positively affected by feeding pigs rye silage.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.