• Title/Summary/Keyword: 완경사방정식

Search Result 111, Processing Time 0.023 seconds

Analysis of Impact Factors for the Wave Transmission in the Narrow Channel Sea (수로형 해역에서의 파랑전달에 미치는 영향인자 분석)

  • Lee, Gyong-Seon;Yoon, Han-Sam;Ryu, Cheong-Ro;Park, Jong-Hwa
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.303-308
    • /
    • 2003
  • In this paper, wave numerical modeling was experimented for the analysis of impact factors for the wave transmission as the incident wave and topographic conditions in the narrow channel sea. Recently, Although the results of many researcher for the wave modelling, numerical equations have limited to simulation of wave transformation effects. Despite of thispresent problems, the models was used to design the coastal structures in barrow channel sites. Finally, this paper estimated the wave model(mild slope eq. model) as the analysis of the wave energy transmission according to changing of impact factors(width of channel, bottom slope in channel, incident wave angle, wave period). As the results of numerical experiment, the major impact factors which influence to wave energy transmission were the width of channel and incident wave direction. But in the case that the width of channel is larger than 3L(L=Length of wave), the reduction of wave energy was small.

  • PDF

Effects of Wave Dissipation with Circular Cylinders (원형파일군에 의한 파랑제어 특성)

  • Lee, Seong-Dae;Kim, Seong-Deuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • One of the central problems in astudy of the coastal surface wave environment is predicting the transformation of waves as they propagate toward the shore. The transformation is mainly due to the existence of obstacles, such as breakwaters and vertical cylinders. In general, the types of wave transformation can be classified as follows: wave diffraction, reflection, transmission, scattering, radiation, et al. This research dealtwith wave transmission and dissipation problems for two dimensional irregular waves and vertical circular cylinders. Using the unsteady mild slope equation, a numerical model was developed to calculate the reflection and transmission of regular waves from a multiple-row circular breakwater and vertical cylinders. In addition, hydraulic model experiments were conducted with different values for the properties between tire piles and the opening ratio (distances) between the rows of the breakwater. It was found that the transmission coefficients decreased with a decrease in the opening ratio and an increase in the rows of vertical cylinders. A comparison between the results of hydraulic and numerical experiments showed reasonable agreement.

Wave Damping Rate Over Multi-layer Permeable Bed of Finite Depth (깊이가 유한한 다중 투수층 위에서의 파의 감쇠율)

  • Suh, Kyung-Duck;Do, Ki-Deok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • Reid and Kajiura(1957) has studied on the wave damping rate over a permeable bed of infinite depth. In this study, wave damping rate over a permeable bed of finite depth is derived by linear wave theory. It is then extended to derive wave damping rates over a double or triple layer, each of which consist of different material. Applying the wave damping rate to the mild slope equation, the wave transmission coefficient over a permeable bed has been calculated. The model has been certificated by comparing with the result of Flaten and Rygg(1991)'s integral equation method in the case of a single-layer bed.

A Harbour Oscillation Model by Galerkin Finite Element Method (Galerkin 유한요소법에 의한 항내 정온도 모형)

  • 서승남;연영진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.439-451
    • /
    • 1994
  • A numerical model for harbour oscillation is presented by use of Galerkin finite element method. The governing equation is used by the modified mild slope equation derived from Chen (1986) in which bottom friction is incorporated. Since the existing absorbing boundary condition. however. is shown to be incorrect correct boundary condition and forcing term due to an incident plane wave are rederived. Computation results for a rectangular harbour are shown in comparison with both laboratory data and existing numerical results. After the values of friction factor (f) and reflection coefficient (K$_{r}$) are discussed, the set (K$_{r}$=0, 94, f=0) is found to be best fitted to the laboratory data of the rectangular harbour.

  • PDF

Analysis of Wave Responses in Harbor Using Boundary Damper Techniques (경계 damper를 이용한 항만 파낭응답 해석)

  • 정원무;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.39-44
    • /
    • 1993
  • This paper is concerned with developing a finite element model incorporating boundary damper techniques which is applicable to the prediction of wave agitations in harbors. Based on the linear wave theory, a mild-slope equation is used. In order to consider the wave energy dissipations on solid boundary. the partial reflecting boundary condition is introduced. Radiating boundary condition is modeled by using tile second-order boundary damper developed by Bando et al. (1984). The near field region in harbor is discretized using 8-noded isoparametric elements, the boundary conditions are presented using 3-noded line elements. The numerical model is applied to a fully open rectangular harbor to prove its validity. Numerical experiments are also performed to investigate the effects of the wave reflection coefficients of solid boundary and the types of the dampers.

  • PDF

Numerical Analysis of Wave Agitations in Arbitrary Shaped Harbors by Hybrid Element Method (복합요소법을 이용한 항내 파낭 응답 수치해석)

  • 정원무;편종근;정신택;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.1
    • /
    • pp.34-44
    • /
    • 1992
  • A numerical model using Hybrid Element Method(HEM) is presented for the prediction of wave agitations in a harbor which are induced by the intrusion and transformation of incident short-period waves. A linear mild-slope equation including bottom friction is used as the governing equation and a partial absorbing boundary condition is used on solid boundaries. Functional derived in the present paper is based on the Chen and Mei(1974)'s concept which uses finite element net in the inner region and analytical solution of Helmholtz equation in the outer region. Final simultaneous equations are solved using the Gaussian Elimination Method. The model appears to be reasonably good from the comparison of numerical calculation with hydraulic experimental results of short-wave diffraction through a breakwater gap(Pos and Kilner, 1987). The problem of requring large computational memory could be overcome using 8-noded isoparametric elements.

  • PDF

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (2.Effects of Entrance Energy Loss) (개구부가 좁은 직사각형 항만의 공진 특성 (2.항입구 에너지 손실의 영향))

  • 정원무;박우선;서경덕;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.216-230
    • /
    • 1999
  • A Galerkin finite element model for the analysis of harbor oscillation has been developed based on the extended mild-slope equation. Infinite elements are used to accomodate the radiation condition at infinity and joint elements to treat the matching conditions at the harbor entrance which include the energy loss due to flow separation. The numerical tests for rectangular harbors with fully or partially open entrances show that the energy loss at the harbor entrance considerably reduces the the amplification ratios at the innermost parts of the harbors and that the amplification ratios decrease considerably with increasing incident wave heights and jet lengths at the harbor entrance. Application of the model to the Gamcheon harbor show that when the incident wave amplitude is small the amplification ratios rather increase when the entrance energy loss is included than when ignored because of the shift of the resonance periods. Even though the entrance energy loss was insignificant for the measured long-period incident waves, it would be of great importance if the incident waves were large as in the attack of tsunamis. The resonance period of the Helmholtz mode at the Gamcheon Harbor was calculated to be 31 minutes, which agrees well with the measured one between 27 and 33.3 minutes. The measured resonance periods between 9.4 and 12.1 minutes and 5.2 and 6.2 minutes were also calculated by the numerical model as 10.4 minutes and 6.6 or 5.6 minutes, indicating good performance of the model. On the other hand, it was shown that a variety of oscillation modes exists in the Gamcheon Harbor and lateral resonances of considerable amplification ratios also exist at the periods of 3.6 and 1.6 minutes as in the Young-II Bay.

  • PDF

Wave Attenuation due to Water-Front Vegetation (수변식생에 의한 파랑감쇠 특성)

  • Lee, Seong-Dae
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.341-347
    • /
    • 2008
  • Recently, it has been widely recognized that water-front and coastal vegetations may have great value in supporting fisheries, protecting from wave attack, stabilizing the sea bed and maintaining good scenery. Hydrodynamic factors playa major role in the functions of water quality and ecosystems. However, the studies on numerical and analytical process of wave propagation are few and far behind compared to those on the hydrodynamic roles of water-front vegetations. In this study, in order to express wave attenuation into water-front vegetation, a numerical model based on the unsteady mild slope equation is developed. This result is compared with an analytical model for describing the wave attenuation by assumed simple long wave condition. Based on both the analytical and numerical results, the physical properties of the wave attenuation are examined under various wave, geometric and vegetation conditions. Through comparisons between the analytical and numerical results, the effects of the vegetation properties, wave properties and model parameters such as the momentum exchange coefficient have been clarified.

A Methodology of Estimating Design Waves for the Operable Harbor Condition Using Long-term Wave Data (장기 파랑측정자료를 이용한 평상파 산정 방법론)

  • Ahn Kyungmo;Chun Je Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.178-189
    • /
    • 2004
  • For designing a reliable harbor, a methodology for estimating design waves of 97.5% operable harbor condition is suggested using long-term wave data. For a practical application of the methodology, a marine police harbor was selected as a site. Wave data used were collected from February 1993 to December 2003 at Jodo wave gage station in front of Pusan harbor. Joint distributions of significant wave height and significant wave period for specified wave directions were obtained and used to feed as input waves for parabolic mild-slope wave model. Results showed that input waves with significant wave height of 1.75 m, significant wave period off sec and wave direction E yield design waves height of 1.06 m at the site of interests, which is a 97.5% operable harbor condition. Wind waves generated inside harbor showed to be no effect on the design wave condition. Swells propagated from deep water into harbor are shown to be dominant effects on the design waves of operable harbor condition.

Application of Wave Resonator to the Field for Controlling Secondary Undulation (부진동의 제어를 위한 공진장치의 현장적용)

  • Lee, Kwang-Ho;Beom, Seong-Sim;Kim, Do-Sam;Choi, Nack-Hoon;Park, Jong-Bae;An, Seong-Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2012
  • In this study, to reduce the motion of the vessels resulting from resonance and secondary undulation by long-period waves, numerical review on the control performance of resonator was carried out by attaching the resonator to the established harbor of real waters. In the numerical analysis, CGWAVE MODULE of commercial software SMS(Surface water Modeling System), a finite element model based on 2-dimensional elliptical mild slope equation was applied, and through comparative analysis of the existing experiments and analysis results on the rectangular model ports, the validity of the friction coefficients in which validity and effectiveness of SMS on the secondary undulation analysis is applied was verified. Based on this, the control performance of resonator was confirmed through comparative review of the secondary undulation according to whether or not to attach the resonator to rectangular harbor. In addition, to reduce long-period motion of the moored vessels and the secondary undulation which may occur in Pohang new port, the method to move the resonant period which causes abnormal motion of the vessels to long-term one was discussed through application of the resonators with various sizes, thereby identifying the availability.