• Title/Summary/Keyword: 와

Search Result 61,796, Processing Time 0.083 seconds

A Study on the Meaning of 'Gyoun' and Earlier Variations of Chapter One of 'Gyoun' in The Canonical Scripture (『전경(典經)』 「교운(敎運)」편 1장에 나타난 교운의 의미와 구절의 변이 연구)

  • Ko, Nam-sik
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.36
    • /
    • pp.153-199
    • /
    • 2020
  • The teachings of Sangje teachings have been spread to humanity and were provided as basis for building the earthly paradise due to His having performed the Reordering Works of the Universe (Cheonjigongsa) for nine years. The work that remains will be completed year by year following the cosmic program that Sangje set for the universe. The chapters titled 'Gyoun (Progress of the Order)' in Jeon-gyeong (The Canonical Scripture) can be summarized into three parts: Viewing Gyoun, Spreading Gyoun, and Establishing the firm ground of Gyoun. Viewing Gyoun is seeing how the teachings would be transmitted from the beginning to end. The work of Gyoun was established by Sangje and promoted as the teachings of Sangje which will ultimately unfold into the realization of an earthly paradise. Spreading Gyoun is performed by disciples who received the teachings from Sangje and then the successor to whom Sangje transmitted the religious authority. Since chapter two of Gyoun is about the hagiography of Doju Jo Jeongsan, it is shown that Doju unfolded and developed Sangje's teachings. Establishing the firm ground of Gyoun is carried out to enable practitioners to understand that Dotong-gunja ('Dao-Empowered Sages,' Earthly Immortals) will be produced as a result of Sangje's Reordering Works of Heaven and Earth and that humans can perfect themselves through cultivating the Dao. In conclusion, Gyoun can be summarized as a process that started during Doju Jo Jeongsan's 50 years (1909~1958) of holy works and spreading of the teachings. Next, it was continued through the time of Dojeon who was bestowed with religious authority through Doju's last words. Dojeon, like Doju before him, spread the teachings. In later times, there will be Dotong-gunjas who transmit Sangje's teachings to the whole world. Although the above characterizations are accurate, I compared some verses from Chapter 1 of Progress of the Order (Gyoun) in The Canonical Scripture (Jeon-gyeong) of Daesoon Jinrihoe to the 6 th edition (1965) of Daesoon Jeongyeong, a key scripture from the earliest strata of Jeungsanist scriptures, and found that there were a few earlier variations of the same content. The use of words and sentences were different though in several of these verses. Also, some of the verses indicated alternative historical dates (years), and some of the verses from Chapter 1 of Progress of the Order from The Canonical Scripture do not appear anywhere in the 6th edition of Daesoon Jeong-gyeong.

The Origin of Radioactive Elements Found in Groundwater Within the Chiaksan Gneiss Complex: Focusing on the Relationship with Minerals of the Surrounding Geology (치악산 편마암 복합체에 분포하는 지하수 내 함유된 방사성 원소의 기원: 주변 지질을 구성하는 광물과의 연관성을 중심으로)

  • Kim, Hyeong-Gyu;Lee, Sang-Woo;Kim, Soon-Oh;Jeong, Do-Hwan;Kim, Moon-Su;Kim, Hyun-Koo;Jeong, Jong Ok
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.153-168
    • /
    • 2022
  • Petrological and mineralogical analyses were conducted to identify minerals containing radioactive elements (uranium) in the Chiaksan gneiss complex and to confirm their association with the surrounding groundwater. Fourteen minerals were identified through the microscopic and electron microscopy (SEMEDS) investigation. The principal minerals included plagioclase, biotite, quartz, alkali feldspar, chlorite, and calcite. Minor minerals were sphene, allanite, apatite, zircon, thorite, titanite, pyrite, and galena. A small amount of thorite was observed in the size of ~1 mm within macrocrystalline allanite. Allanite, which includes a large amount of rare earth elements, appeared in three distinctive patterns. The results of the EPMA analyses indicated that macrocrystalline allanite had higher elemental contents of TiO2~1.70 wt.%, Ce2O3~11.86 wt.%, FeO ~13.31 wt.%, MgO ~0.90 wt.% and ThO2 ~1.06 wt.% with the lowest average content of Al2O3 17.35 ± 2.15 wt.% (n = 7), CaO 12.13 ± 1.81 wt.% (n = 7). An allanite existing at the edge of the sphenes encompassing titanites had a higher element content of Al2O3 ~24.00 wt.%, Nd2O3 ~5.10 wt.%, Sm2O3~0.66 wt.%, Dy2O3~0.86 wt.% and Y2O3~1.38 wt.% with the lowest average content of TiO2 0.35 ± 0.21 wt.% (n = 11), Ce2O3 5.25 ± 1.03 wt.% (n = 11), FeO 9.84 ± 0.26 wt.% (n = 11), MgO 0.12 ± 0.05 wt.% (n = 11), and La2O3 1.49 ± 0.29 wt.% (n = 11). Allanites in a matrix of parental rocks exhibited intermediate values between the two elemental compositions mentioned above. None of the uranium-rich minerals were observed in the migmatitic gneiss within the study area. Consequently, the origin of uranium in the groundwater was not associated with the geology of the surrounding environment, but our investigation proved the existence of abundant allanites containing significant amounts of radioactive thorium and rare earth elements.

A Study on Lee, Man-Bu's Thought of Space and Siksanjeongsa with Special Reference of Prototype Landscape Analyzing Nuhangdo(陋巷圖) and Nuhangnok(陋巷錄) (누항도(陋巷圖)와 누항록(陋巷錄)을 통해 본 이만부의 공간철학과 식산정사의 원형경관)

  • Kahng, Byung-Seon;Lee, Seung-Yeon;Shin, Sang-Sup;Rho, Jae-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.2
    • /
    • pp.15-28
    • /
    • 2021
  • 'Cheonunjeongsa (天雲精舍)', designated as Gyeongsangbukdo Folklore Cultural Property No. 76, is a Siksanjeongsa built in 1700 by Manbu Lee Shiksan. In this study, we investigate the life and perspective of Manbu Lee in relation to Siksanjeongsa, and estimate the feng shui location, territoriality, and original landscape by analyzing 「Nuhangnok」 and 「Nuhando」, the results of his political management. The following results were derived by examining the philosophy that the scholar wanted to include in his space. First, Manbu Lee Shiksan was a representative hermit-type confucian scholar in the late Joseon Dynasty. 'Siksan', the name of the government official and the nickname of Manbu Lee, is derived from the mountain behind the village, and he wanted to rest in the four areas of thought(思), body(躬), speech(言), and friendship(交). During the difficult years of King Sukjong, Lee Manbu of a Namin family expressed his will to seclude through the title 'Siksan'. Second, There is a high possibility of restoration close to the original. Manbu Lee recorded the location of Siksanjeongsa, spatial structure, buildings and landscape facilities, trees, surrounding landscape, and usage behaviors in 「Nuhangnok」, and left a book of 《Nuhangdo》. Third, Manbu Lee refers to the feng shui geography view that Oenogok is closed in two when viewed from the outside, but is cozy and deep and can be seen from a far when entering inside. The whole village of Nogok was called Siksanjeongsa, which means through the name. It can be seen that the area was formed and expanded. Fourth, the spatial composition of Siksanjeongsa can be divided into a banquet space, an education space, a support space, a rest space, a vegetable and an herbal garden. The banquet space composed of Dang, Lu, and Yeonji is a personal space where Manbu Lee, who thinks about the unity of the heavenly people, the virtue of the gentleman, and humanity, is a place for lectures and a place to live. Fifth, Yangjeongjae area is an educational space, and Yangjeongjae is a name taken from the main character Monggwa, and it is a name that prayed for young students to grow brightly and academically. Sixth, the support space composed of Ganjijeong, Gobandae, and Sehandan is a place where the forested areas in the innermost part of Siksanjeongsa are cleared and a small pavilion is built using natural standing stones and pine trees as a folding screen. The virtue and grace of stopping. It contains the meaning of leisure and the wisdom of a gentleman. Seventh, outside the wall of Siksanjeongsa, across the eastern stream, an altar was built in a place with many old trees, called Yeonggwisa, and a place of rest was made by piling up an oddly shaped stone and planting flowers. Eighth, Manbu Lee, who knew the effects of vegetables and medicinal herbs in detail like the scholars of the Joseon Dynasty, cultivated a vegetable garden and an herbal garden in Jeongsa. Ninth, it can be seen that Lee Manbu realized the Neo-Confucian utopia in his political life by giving meaning to each space of Siksanjeongsa by naming buildings and landscaping facilities and planting them according to ancient events.

Development and Validation of an Analytical Method for Fungicide Fluoxastrobin Determination in Agricultural Products (농산물 중 살균제 Fluoxastrobin의 시험법 개발 및 유효성 검증)

  • So Eun, Lee;Su Jung, Lee;Sun Young, Gu;Chae Young, Park;Hye-Sun, Shin;Sung Eun, Kang;Jung Mi, Lee;Yun Mi, Chung;Gui Hyun, Jang;Guiim, Moon
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.373-384
    • /
    • 2022
  • Fluoxastrobin a fungicide developed from Strobilurus species mushroom extracts, can be used as an effective pesticide to control fungal diseases. In this study, we optimized the extraction and purification of fluoxastrobin according to its physical and chemical properties using the QuEChERS method and developed an LC-MS/MS-based analysis method. For extraction, we used acetonitrile as the extraction solvent, along with MgSO4 and PSA. The limit of quantitation of fluoxastrobin was 0.01 mg/kg. We used 0.01, 0.1, and 0.5 mg/kg of five representative agricultural products and treated them with fluoxastrobin. The coefficients of determination (R2) of fluoxastrobin and fluoxastrobin Z isomer were > 0.998. The average recovery rates of fluoxastrobin (n=5) and fluoxastrobin Z isomer were 75.5-100.3% and 75.0-103.9%, respectively. The relative standard deviations (RSDs) were < 5.5% and < 4.3% for fluoxastrobin and fluoxastrobin Z isomer, respectively. We also performed an interlaboratory validation at Gwangju Regional Food and Drug Administration and compared the recovery rates and RSDs obtained for fluoxastrobin and fluoxastrobin Z isomer at the external lab with our results to validate our analysis method. In the external lab, the average recovery rates and RSDs of fluoxastrobin and fluoxastrobin Z isomer at each concentration were 79.5-100.5% and 78.8-104.7% and < 18.1% and < 10.2%, respectively. In all treatment groups, the concentrations were less than those described by the 'Codex Alimentarius Commission' and the 'Standard procedure for preparing test methods for food, etc.'. Therefore, fluoxastrobin is safe for use as a pesticide.

Occurrence and Chemical Composition of Dolomite and Chlorite from Xiquegou Pb-Zn Deposit, China (중국 Xiquegou 연-아연 광상의 돌로마이트와 녹니석 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.125-140
    • /
    • 2022
  • The Xiquegou Pb-Zn deposit is located at the Qingchengzi orefield which is one of the largest Pb-Zn mineralized zone in the northeast of China. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Xiquegou deposit which is a Triassic magma-hydrothermal type deposit occurs as vein ore filled fractures along fault zone in unit 3 (dolomitic marble and schist) of Dashiqiao formation of the Paleoproterozoic Liaohe group. Xiquegou Pb-Zn deposit consists of quartz, apatite, calcite, pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, stannite, galena, tetrahedrite, electrum, argentite, native silver and pyrargyrite. Wallrock alteration of this deposit contains silicification, pyritization, dolomitization, chloritization and sericitization. Based on mineral petrography and paragenesis, dolomites from this deposit are classified two type (1. dolomite (D0) as wallrock, 2. dolomite (D1) as wallrock alteration in Pb-Zn mineralization quartz vein ore). The structural formulars of dolomites are determined to be Ca1.03-1.01Mg0.95-0.83Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) and Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1), respectively. It means that dolomites from the Xiquegou deposit have higher content of trace elements compared to the theoretical composition of dolomite. The dolomite (D1) from quartz vein ore has higher content of these trace elements (FeO, PbO, Sb2O5 and As2O5) than dolomite (D0) from wallrock. Dolomites correspond to Ferroan dolomite (D0), and ankerite and Ferroan dolomite (D1), respectively. The structural formular of chlorite from quartz vein ore is (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8. It indicated that chlorite of quartz vein ore is similar with theoretical chlorite and corresponds to Fe-rich chlorite. Compositional variations in chlorite from quartz vein ore are caused by mainly octahedral Fe2+ <-> Mg2+ (Mn2+) substitution and partly phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV).

Arsenic Removal Mechanism of the Residual Slag Generated after the Mineral Carbonation Process in Aqueous System (광물탄산화 공정 이후 발생하는 잔사슬래그의 수계 내 비소 제거 기작)

  • Kim, Kyeongtae;Latief, Ilham Abdul;Kim, Danu;Kim, Seonhee;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.377-388
    • /
    • 2022
  • Laboratory-scale experiments were performed to identify the As removal mechanism of the residual slag generated after the mineral carbonation process. The residual slags were manufactured from the steelmaking slag (blast oxygen furnace slag: BOF) through direct and indirect carbonation process. RDBOF (residual BOF after the direct carbonation) and RIBOF (residual BOF after the indirect carbonation) showed different physicochemical-structural characteristics compared with raw BOF such as chemical-mineralogical properties, the pH level of leachate and forming micropores on the surface of the slag. In batch experiment, 0.1 g of residual slag was added to 10 mL of As-solution (initial concentration: 203.6 mg/L) titrated at various pH levels. The RDBOF showed 99.3% of As removal efficiency at initial pH 1, while it sharply decreased with the increase of initial pH. As the initial pH of solution decreased, the dissolution of carbonate minerals covering the surface was accelerated, increasing the exposed area of Fe-oxide and promoting the adsorption of As-oxyanions on the RDBOF surface. Whereas, the As removal efficiency of RIBOF increased with the increase of initial pH levels, and it reached up to 70% at initial pH 10. Considering the PZC (point of zero charge) of the RIBOF (pH 4.5), it was hardly expected that the electrical adsorption of As-oxyanion on surface of the RIBOF at initial pH of 4-10. Nevertheless it was observed that As-oxyanion was linked to the Fe-oxide on the RIBOF surface by the cation bridge effect of divalent cations such as Ca2+, Mn2+, and Fe2+. The surface of RIBOF became stronger negatively charged, the cation bridge effect was more strictly enforced, and more As can be fixed on the RIBOF surface. However, the Ca-products start to precipitate on the surface at pH 10-11 or higher and they even prevent the surface adsorption of As-oxyanion by Fe-oxide. The TCLP test was performed to evaluate the stability of As fixed on the surface of the residual slag after the batch experiment. Results supported that RDBOF and RIBOF firmly fixed As over the wide pH levels, by considering their As desorption rate of less than 2%. From the results of this study, it was proved that both residual slags can be used as an eco-friendly and low-cost As remover with high As removal efficiency and high stability and they also overcome the pH increase in solution, which is the disadvantage of existing steelmaking slag as an As remover.

King Sejo's Establishment of the Thirteen-story Stone Pagoda of Wongaksa Temple and Its Semantics (세조의 원각사13층석탑 건립과 그 의미체계)

  • Nam, Dongsin
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.101
    • /
    • pp.12-46
    • /
    • 2022
  • Completed in 1467, the Thirteen-story Stone Pagoda of Wongaksa Temple is the last Buddhist pagoda erected at the center of the capital (present-day Seoul) of the Joseon Dynasty. It was commissioned by King Sejo, the final Korean king to favor Buddhism. In this paper, I aim to examine King Sejo's intentions behind celebrating the tenth anniversary of his enthronement with the construction of the thirteen-story stone pagoda in the central area of the capital and the enshrinement of sarira from Shakyamuni Buddha and the Newly Translated Sutra of Perfect Enlightenment (圓覺經). This paper provides a summary of this examination and suggests future research directions. The second chapter of the paper discusses the scriptural background for thirteen-story stone pagodas from multiple perspectives. I was the first to specify the Latter Part of the Nirvana Sutra (大般涅槃經後分) as the most direct and fundamental scripture for the erection of a thirteen-story stone pagoda. I also found that this sutra was translated in Central Java in the latter half of the seventh century and was then circulated in East Asia. Moreover, I focused on the so-called Kanishka-style stupa as the origin of thirteen-story stone pagodas and provided an overview of thirteen-story stone pagodas built around East Asia, including in Korea. In addition, by consulting Buddhist references, I prove that the thirteen stories symbolize the stages of the practice of asceticism towards enlightenment. In this regard, the number thirteen can be viewed as a special and sacred number to Buddhist devotees. The third chapter explores the Buddhist background of King Sejo's establishment of the Thirteen-story Stone Pagoda of Wongaksa Temple. I studied both the Dictionary of Sanskrit-Chinese Translation of Buddhist Terms (翻譯名義集) (which King Sejo personally purchased in China and published for the first time in Korea) and the Sutra of Perfect Enlightenment. King Sejo involved himself in the first translation of the Sutra of Perfect Enlightenment into Korean. The Dictionary of Sanskrit-Chinese Translation of Buddhist Terms was published in the fourteenth century as a type of Buddhist glossary. King Sejo is presumed to have been introduced to the Latter Part of the Nirvana Sutra, the fundamental scripture regarding thirteen-story pagodas, through the Dictionary of Sanskrit-Chinese Translation of Buddhist Terms, when he was set to erect a pagoda at Wongaksa Temple. King Sejo also enshrined the Newly Translated Sutra of Perfect Enlightenment inside the Wongaksa pagoda as a scripture representing the entire Tripitaka. This enshrined sutra appears to be the vernacular version for which King Sejo participated in the first Korean translation. Furthermore, I assert that the original text of the vernacular version is the Abridged Commentary on the Sutra of Perfect Enlightenment (圓覺經略疏) by Zongmi (宗密, 780-841), different from what has been previously believed. The final chapter of the paper elucidates the political semantics of the establishment of the Wongaksa pagoda by comparing and examining stone pagodas erected at neungsa (陵寺) or jinjeonsawon (眞殿寺院), which were types of temples built to protect the tombs of royal family members near their tombs during the early Joseon period. These stone pagodas include the Thirteen-story Pagoda of Gyeongcheonsa Temple, the Stone Pagoda of Gaegyeongsa Temple, the Stone Pagoda of Yeongyeongsa Temple, and the Multi-story Stone Pagoda of Silleuksa Temple. The comparative analysis of these stone pagodas reveals that King Sejo established the Thirteen-story Stone Pagoda at Wongaksa Temple as a political emblem to legitimize his succession to the throne. In this paper, I attempt to better understand the scriptural and political semantics of the Wongaksa pagoda as a thirteen-story pagoda. By providing a Korean case study, this attempt will contribute to the understanding of Buddhist pagoda culture that reached its peak during the late Goryeo and early Joseon periods. It also contributes to the research on thirteen-story pagodas in East Asia that originated with Kanishka stupa and were based on the Latter Part of the Nirvana Sutra.

Studies on the Flowering and Maturity in Sesame (Sesamum indicum L.) IV. Effects of Foliage Clipping on the Seed Maturity (참깨의 개화.등숙에 관한 연구 IV. 적엽처리가 참깨의 등숙에 미치는 영향)

  • Lee, Jung-Il;Kang, Chul-Whan;Son, Eung-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.165-173
    • /
    • 1985
  • The objectives of the study were to investigate the effects of foliage clipping on photosynthesis and grain filling for branch and non branch types under the polyethylene film mulch and non mulch conditions in mono cropping and second cropping after barley in sesame (Sesamum indicum L.), and to improve poor grain filling at later flowering time utilizing these data. One thousand grain weight was more decreased in branch type than in non branch type, in polyethylene film mulch condition than in non mulch condition, and in second cropping after barley than in mono cropping by clipping lower part foliage. Twentyfive percent clipping of lower part foliage showed a little increase than no clipping. Matured grain rate also showed same tendency between branch and non branch type and between mono cropping and second cropping after barley as well as 1,000 grain weight except for polyethylene film mulch. Matured grain rate of 25% foliage clipping at 30 days after flowering in non branch type presented a little increase but decreased in branch type. Clipping of higher part leaves were so serious decrease of matured grain rate that higher part leaves at late maturing time have a major role in photosynthesis. Matured grain rate of foliage clipping at 10 days after flowering was decreased in all treatments. Chlorophyll content of higher part leaves at 50% lower part foliage clipping presented 39% increase compared to same positioned leaves of non treatment, and 66% increase by 50% higher part foliage clipping in lower part leaves. Photosynthetic activity was 58% more increased in 50% lower part foliage clipping than no clipping, but seriously decreased in 50% higher part foliage clipping. Therfore, photosynthates of remained lower part leaves could not only support their own demands, but also any contribution to translocation of photosynthates from source to sink at late maturing time. Harvest index was 28% increased in 25% lower part foliage clipping and 13% decreased in 50% higher part foliage clipping compared to no clipping. Leaf area was 48% increased in 50% lower part foliage clipping compared to the same positioned leaves of no clipping, and only 5% increased in higher part foliage clipping. Productivity by foliage clipping compared to non treatment, was highly decreased in branch type than in non branch type, in second cropping after barley than in mono cropping. Little difference was detected between polyethylene film mulch and non mulch conditions. Twenty five percentage of lower part foliage clipping on mono cropping of non branch type appeared 5% and 8% yield increase in each of polyethylene film mulch and non mulch conditions compared to no clipping, and all decreased in other treatments. Mean loss of productivity by foliage clipping at 10 days after flowering was serious than clipping at 30 days after flowering. As the result, contribution to photosynthesis of source at 10 days after flowering are larger than that at 30 days after flowering in sesame. Fifty percent lower part foliage clipping at 10 days after flowering showed so the most serious yield decrease that lower part leaves at that time were considered as the main role leaves for photosynthesis.

  • PDF

A study on Broad Quantification Calibration to various isotopes for Quantitative Analysis and its SUVs assessment in SPECT/CT (SPECT/CT 장비에서 정량분석을 위한 핵종 별 Broad Quantification Calibration 시행 및 SUV 평가를 위한 팬텀 실험에 관한 연구)

  • Hyun Soo, Ko;Jae Min, Choi;Soon Ki, Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose Broad Quantification Calibration(B.Q.C) is the procedure for Quantitative Analysis to measure Standard Uptake Value(SUV) in SPECT/CT scanner. B.Q.C was performed with Tc-99m, I-123, I-131, Lu-177 respectively and then we acquired the phantom images whether the SUVs were measured accurately. Because there is no standard for SUV test in SPECT, we used ACR Esser PET phantom alternatively. The purpose of this study was to lay the groundwork for Quantitative Analysis with various isotopes in SPECT/CT scanner. Materials and Methods Siemens SPECT/CT Symbia Intevo 16 and Intevo Bold were used for this study. The procedure of B.Q.C has two steps; first is point source Sensitivity Cal. and second is Volume Sensitivity Cal. to calculate Volume Sensitivity Factor(VSF) using cylinder phantom. To verify SUV, we acquired the images with ACR Esser PET phantom and then we measured SUVmean on background and SUVmax on hot vials(25, 16, 12, 8 mm). SPSS was used to analyze the difference in the SUV between Intevo 16 and Intevo Bold by Mann-Whitney test. Results The results of Sensitivity(CPS/MBq) and VSF were in Detector 1, 2 of four isotopes (Intevo 16 D1 sensitivity/D2 sensitivity/VSF and Intevo Bold) 87.7/88.6/1.08, 91.9/91.2/1.07 on Tc-99m, 79.9/81.9/0.98, 89.4/89.4/0.98 on I-123, 124.8/128.9/0.69, 130.9, 126.8/0.71, on I-131, 8.7/8.9/1.02, 9.1/8.9/1.00 on Lu-177 respectively. The results of SUV test with ACR Esser PET phantom were (Intevo 16 BKG SUVmean/25mm SUVmax/16mm/12mm/8mm and Intevo Bold) 1.03/2.95/2.41/1.96/1.84, 1.03/2.91/2.38/1.87/1.82 on Tc-99m, 0.97/2.91/2.33/1.68/1.45, 1.00/2.80/2.23/1.57/1.32 on I-123, 0.96/1.61/1.13/1.02/0.69, 0.94/1.54/1.08/0.98/ 0.66 on I-131, 1.00/6.34/4.67/2.96/2.28, 1.01/6.21/4.49/2.86/2.21 on Lu-177. And there was no statistically significant difference of SUV between Intevo 16 and Intevo Bold(p>0.05). Conclusion Only Qualitative Analysis was possible with gamma camera in the past. On the other hand, it's possible to acquire not only anatomic localization, 3D tomography but also Quantitative Analysis with SUV measurements in SPECT/CT scanner. We could lay the groundwork for Quantitative Analysis with various isotopes; Tc-99m, I-123, I-131, Lu-177 by carrying out B.Q.C and could verify the SUV measurement with ACR phantom. It needs periodic calibration to maintain for precision of Quantitative evaluation. As a result, we can provide Quantitative Analysis on follow up scan with the SPECT/CT exams and evaluate the therapeutic response in theranosis.

A Study on the Characteristics and Management Plan of Old Big Trees in the Sacred Natural Sites of Handan City, China (중국 한단시 자연성지 내 노거수의 특성과 관리방안)

  • Xi, Su-Ting;Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.2
    • /
    • pp.35-45
    • /
    • 2023
  • First, The spatial distribution characteristics of old big trees were analyzed using ArcGIS figures by combining basic information such as species and ages of old big trees in Handan City, which were compiled by the local bureau of landscaping. The types of species, distribution by ages of trees, ownership status, growth status, and diversity status were comprehensively analyzed. Statistically, Styphnolobium, Acacia, Gleditsia, and Albizia of Fabaceae accounted for the majority, of which Sophora japonica accounted for the highest proportion. Sophora japonica is widely and intensively distributed to each prefecture and district in Handan city. According to the age and distribution, the old big trees over 1000 years old were mainly Sophora japonica, Zelkova serrata, Juniperus chinensis, Morus australis Koidz., Dalbergia hupeana Hance, Ceratonia siliqua L., and Pistacia chinensis, and Platycladus orientalis. Second, as found in each type of old big tree status, various types of old big tree status were investigated, the protection management system, protection management process, and protection management benefits were studied, and the protection of old big tree was closely related to the growth environment. Currently, the main driving force behind the protection of old big trees is the worship of old big trees. By depositing its sacredness to the old big tree and sublimating the natural character that nature gave to the old big tree into a guiding consciousness of social activities, nature's "beauty" and personality's "goodness" are well combined. The protection state of the old big tree is closely related to the degree of interaction with the surrounding environment and the participation of various cultures and subjects. In the process of continuously interacting with the surrounding environment during the long-term growth of old big trees, it seems that a natural sanctuary was formed around old big trees in the process of voluntarily establishing a "natural-cultural-scape" system involving bottom-up and top-down cross-regions, multicultural and multi-subjects. Third, China focused on protecting and recovering old big trees, but the protection management system is poor due to a lack of comprehensive consideration of historical and cultural values, plant diversity significance, and social values of old big trees in the management process. Three indicators of space's regional characteristics, property and protection characteristics, and value characteristics can be found in the evaluation of the natural characteristics of old giant trees, which are highly valuable in terms of traditional consciousness management, resource protection practice, faith system construction, and realization of life community values. A systematic management system should be supported as to whether they can be protected and developed for a long time. Fourth, as the perception of protected areas is not yet mature in China, "natural sanctuary" should be treated as an important research content in the process of establishing a nature reserve system. The form of natural sanctuary management, which focuses on bottom-up community participation, is a strong supplement to the current type of top-down nature reserve management in China. Based on this, the protection of old giant trees should be included in the form of a nature reserve called a natural monument in the nature reserve system. In addition, residents of the area around the nature reserve should be one of the main agents of biodiversity conservation.