• Title/Summary/Keyword: 와이퍼 시스템

Search Result 21, Processing Time 0.025 seconds

Adaptable Wiper Speed Control to the Driver Using Fuzzy Inference (퍼지추론을 적용한 운전자 중심의 와이퍼 속도 제어)

  • 박정숙;김민정;김은진;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.157-160
    • /
    • 2001
  • 본 논문에서는 강수량과 자동차 주행속도 등의 환경조건에 따라 와이퍼 속도를 일정하게 적용한 기존의 시스템을 개선하여 운전자의 개인 특성에 의해서도 속도 변경이 가능하게 함으로서 인간에게 조금 더 친밀감을 제공하는 시스템을 구현하였다. 초기 와이퍼 속도는 입력받은 강수량과 자동차 주행 속도로 추론하여 구하였다. 추론된 와이퍼 속도를 운전자의 개인 특성에 따라 변경하고자 할 경우, 해당 음성명령을 입력받아 재 추론하였다. 음성인식을 위해서는 고립단어 인식에 적절한 DTW방식을 사용하였고, 와이퍼 속도는 퍼지 추론을 적용하여 구하였다.

  • PDF

Improvement of Flight Safety on Configuration Change of Rotorcraft Wiper Arm (회전익 항공기의 와이퍼 암 형상변경을 통한 비행 안전성 향상)

  • Kim, Dae-Han;Lee, Yoon-Woo;An, Jeong-Min;Park, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.736-741
    • /
    • 2017
  • This paper examines the design for improving the wiper system of rotorcraft. During rotorcraft operation, the wiping performance and excessive clearance can decrease. The wiper system consists of a wiper arm assembly, motor, convertor and flex drive. If there is a problem with the wiper system, the operation ability decreases because the operation is restricted in a rainy environment. There are two main causes of the problem of the wiper system: the lifting forces acting on the wiper arm in aircraft flight and the excessive gap of the components. To remedy these two problems, the wiper arm was improved. The improvements included increased contact pressure on the wiper arm (spring tension), improved gear clearance, and material and shape changes. Durability test, aircraft ground test and flight test were carried out to verify the improved shape, and it was confirmed that the wiping performance and clearance problems were solved. Currently, the rotorcraft is operated without problem by applying the improved shape, and this design improvement process will be a useful reference for future rotorcraft development.

Measurement and Analysis of Automative Wiper Blade Squeal Noise Generation Mechanism (자동차 와이퍼 스퀼 소음의 발생, 측정 및 분석)

  • Min, Dong-Ki;Jeong, Seong-Bin;Yoo, Hong-Hee;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.598-598
    • /
    • 2010
  • 와이퍼 작동 중에 발생하는 진동소음 중 1000Hz 이상의 스퀼 소음은 발생 메커니즘이 정확하게 알려지지 않았으며 발생하는 조건도 불규칙하다. 이 스퀼 소음의 발생 빈도 및 주파수를 변경하는 설계를 위하여 스퀼 진동 소음의 발생 메커니즘의 원인분석이 우선적으로 이루어져야 한다. 이 논문에서는 자동차 와이퍼 시스템에서 워셔액을 분사하였을 때 발생하는 스퀼 소음을 측정하고 인자 별로 분석하였다. 스퀼 소음이 발생하는 인자들을 마찰계수와 연관이 있는 인자, 기하학적인 인자, 와이퍼의 운동과 관련된 인자들로 나누어 분석하였다. 실제 와이퍼 시스템을 구현하기 위하여 모터와 원판 지지대 등을 이용하였고, 마이크로폰, 레이저 바이브로미터, 노이즈북, 아르테미스를 이용하여 측정 및 분석하였다.

  • PDF

Development of OPAMP in an A/D Converter for Pressure Measurement (압력측정용 A/D변환기의 OPAMP 개발)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.435-442
    • /
    • 2010
  • The efficiency of the car's wiper blade has a great contribution to the guarantee of security. To guarantee the wiper blade's ability of getting rid of dust sticking on the glass surface, the qualities of lubricant, durability, heat resistant, low temperature, ozone resistant, chemical resistant must be good as well as it being noiseless. Like this, in order to improve the wiper's skills, it is essential to have a system that is able to assess and analyse the properties of the wiper. In this paper, to create a system that measures the car's wiper pressure, an analog/digital converter (ADC) that receives signals generated from the pressure sensor and transmits it to a personal computer is proposed. The designed ADC is one of the pipeline ADCs that can obtain fast movement rate and also a structure that can optimize the entire system's area as well as the consumption of strength.

Estimation of Contact Pressure of a Flat Wiper Blade by Dynamic Analysis (플랫 타입 와이퍼 블레이드의 동적 해석을 통한 누름압 예측)

  • Kim, Wook-Hyeon;Park, Tae-Won;Chai, Jang-Bom;Jung, Sung-Pil;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.837-842
    • /
    • 2010
  • The wiper system of a vehicle is important because it wipes the windshield, thereby enabling drivers to see through the windshield even under conditions of rain and snow. The blade is the key component of the wiper system because it wipes the windshield. When wiper-arm spring causes the blade to be pressed on the windshield optimum performance of wiping can be achieved when appropriate contact pressure is maintained. In this study, a dynamic analysis of the wiper system is carried out. A three-dimensional finite-element model of the wiper system is generated using SAMCEF, a commercial structural dynamic analysis program. The distribution of the contact pressure of the blade in its dynamic state is calculated. The simulation result is compared to the experiment result. Using the results of this study, the contact pressure of the blade can be estimated.

Intelligent Rain Sensing Algorithm for Vision-based Smart Wiper System (비전 기반 스마트 와이퍼 시스템을 위한 지능형 레인 감지 알고리즘 개발)

  • Lee, Kyung-Chang;Kim, Man-Ho;Im, Hong-Jun;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1727-1730
    • /
    • 2003
  • A windshield wiper system plays a key part in assurance of driver's safety at rainfall. However, because quantity of rain and snow vary irregularly according to time and velocity of automotive, a driver changes speed and operation period of a wiper from time to time in order to secure enough visual field in the traditional windshield wiper system. Because a manual operation of windshield wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming direct cause of traffic accident. Therefore, this paper presents the basic architecture of vision-based smart windshield wiper system and the rain sensing algorithm that regulate speed and operation period of windshield wiper automatically according to quantity of rain or snow. Also, this paper introduces the fuzzy wiper control algorithm based on human's expertise, and evaluates performance of suggested algorithm in simulator model. In especial, the vision sensor can measure wide area relatively than the optical rain sensor. hence, this grasp rainfall state more exactly in case disturbance occurs.

  • PDF

Detection of The Real-time Weather Information from a Vehicle Black Box (차량용 블랙박스 영상에서의 실시간 기상정보 검지)

  • Kang, Ju-mi;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.320-323
    • /
    • 2014
  • Today is going with the advancement of intelligent transportation systems and traffic environment and helping to provide safe and convenient service through a mobile device work with the popularization of the vehicle black box. The traffic flow by a variety of causes is constantly changing, it is often unable to prepare the driver, depending on external factors can not be controlled by the power of the public, leading to a major accident. The system needs to pass the real-time weather data in the inter-operator to prevent this. The proposed detection algorithm weather information delivered real-time weather information for this paper. The weather condition is detected by using the contrast between the histogram of the motion of the wiper and the clear day algorithm. In general, the wiper is worked in extreme weather conditions that will have a value different contrast due to rain or snow. Situation was considered clear, snowy conditions, such as using it on a rainy situation. First, designated as ROI (Region Of Interest) of the minimum area that can be detected in order to reduce the amount of calculation for the wiper, the wiper, which was detected through the operation of the threshold Thresholding the brightness of the vehicle wiper. In addition, we distinguish the value of each meteorological situation by using contrast. Results was obtained to 80% for the snow conditions, a rainy situation.

  • PDF

A Study on Accelerated Life Testing Model and Design (헬기용 와이퍼 조립체의 가속모델 및 가속수명시험 설계 연구)

  • Kim, Daeyu;Hur, Jangwook;Jeon, Buil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.894-903
    • /
    • 2018
  • In the case of helicopters, the development of parts technology is rapidly changing, and the complexity is rapidly increasing. Particularly, the surge of various electric and electronic systems is recognized as a problem that is directly related to the safety of the helicopter. Due to these problems, there is a growing interest in reliability evaluation in the face of the problem of confirming and certifying the reliability of parts in the development stage. In this paper, the analysis of the failure mechanism of the wiper system was carried out, and the priority and importance of each failure mode were checked by using the results, and major stress factors were derived and the corresponding acceleration model was selected. Also, the accelerated lifetime test time was calculated according to the life test time, acceleration status and acceleration level of the steady state by using the selected acceleration model and characteristic values.

Design of Cooling System of Over-molding Mold for Socket Component of Automobile Wiper (자동차 와이퍼 소켓 부품 제작용 오버몰딩 금형의 냉각 시스템 설계)

  • Lee, Dong-Gi;Park, Min-Woo;Ahn, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1635-1640
    • /
    • 2011
  • The objective of this study is to design of a cooling system of the over-molding mold for a socket component of an automobile wiper by performing numerical analyses. Hot spots in which the temperature distributions are higher than those of other region, were estimated by an initial over-molding analysis for the initial design of the mold. On the basis of the initial over-molding analysis, two types of cooling system designs with a linear cooling channel and a volumetric heat sink, were considered to improve the cooling characteristics of hot spots. To obtain an appropriate cooling system design, the effects of the diameter and the position of the linear cooling channels on the cooling characteristics and the product qualities were quantitatively examined. In addition, the effects of the design of the volumetric heat sink on the cooling characteristics and deformation distributions in the molded product were investigated. The results of the over-molding analysis of the two types of cooling systems showed that the multi-sliced over-molding mold with a volumetric heat sink can improve both the product quality and the cooling characteristics of the mold.

Application of Time-Frequency Analysis as a Tool for Noise Quality Control of DC Motor Systems (DC 모터계의 소음 품질관리를 위한 시간-주파수 분석의 적용)

  • 임상규;최창환
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.841-848
    • /
    • 1999
  • In the quality assurance check process of DC motor systems, even though the overall sound pressure level is acceptable, there is an incident that subjective evaluation leads to failure in product quality due to annoying noise. This kind of problem may be originated from the manufacturing or assembly process. In this paper, the transient spectral analysis, or the time-frequency analysis is applied to the noise quality problem. For the case study, the cause of annoying noise in the wind shield wiper motor is experimentally analyzed in detail. It is concluded that the defect in the shaft causes the impact noise which is not detectable by steady spectral analysis. Also demonstrated is how the time-frequency analysis is effectively applied to the annoying noise identification of the rotor-gear system.

  • PDF