• Title/Summary/Keyword: 와류 상호작용

Search Result 70, Processing Time 0.024 seconds

Passive Control of the Vortex Shedding past a Square Cylinder with Moving Ground Part II Study of Passive Control Technique (지면 운동에 따른 정사각주 후류의 와류 유동장 수치 해석 Part II. 수동 제어 기법 연구)

  • Kim, Tae-Yoon;Lee, Bo-Sung;Lee, Dong-Ho;Kohama, Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.8-14
    • /
    • 2005
  • Understanding of the flow past a bluff body close to a moving ground is very important in automobile and aeronautical fields because of aerodynamic characteristic and instability induced by unsteady vortex shedding. The passive control method that mounted the vertical and horizontal plates at the lower surface of the cylinder is studied to suppress the unsteady oscillation motion. When the grounds moves, the diminish of the shear layer on the ground promotes the interaction between the lower and the upper separated shear layers of the cylinder, hence vortex shedding occurs at the lower gap height than the stationary ground.

Drag Reduction Effect by a Self-Adjustable Splitter Plate on the Flow over a Circular Cylinder (원형실린더 후류내의 가동형 와류분할판에 의한 항력 감소효과)

  • 박운진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1262-1275
    • /
    • 1993
  • The drag reduction effect of a freely-rotatable splitter plate was experimentally investigated in the 2-D wake behind a circular cylinder. By arranging the splitter plate to be aparted with a certain gap from the cylinder, the splitter plate was able to be aligned itself automatically to the flow direction in the tested range of 6.2$\times$$10^3$$\times$$10^4$. As a result, it was proven that the self-adjustable splitter plate always reduced effectively the drag imposed on the body against any arbitrary flow directions. In a specific range of Reynolds numbers, the drag reduction effect was dependent not only on the length of the splitter plate but also on the gap distance between the plate and the trailing edge of the body. For a splitter plate with a specific length, there existed a unique optimum range of gap distance to obtain successfully the drag reduction effect, however, the optimum range of gap distance was dependent on Reynolds number.

Simulation of Unsteady Rotor-Fuselage Aerodynamic Interaction Using Unstructured Adaptive Meshes (비정렬 적응 격자계를 이용한 비정상 로터-동체 공력 상호작용 모사)

  • Nam, H.-J.;Park, Y.-M.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.11-21
    • /
    • 2005
  • A three-dimensional parallel Euler flow solver has been developed for the simulation of unsteady rotor-fuselage interaction aerodynamics on unstructured meshes. In order to handle the relative motion between the rotor and the fuselage, the flow field was divided into two zones, a moving zone rotating with the blades and a stationary zone containing the fuselage. A sliding mesh algorithm was developed for the convection of the flow variables across the cutting boundary between the two zones. A quasi-unsteady mesh adaptation technique was adopted to enhance the spatial accuracy of the solution and to better resolve the wake. A low Mach number pre-conditioning method was implemented to relieve the numerical difficulty associated with the low-speed forward flight. Validations were made by simulating the flows around the Georgia Tech configuration and the ROBIN fuselage. It was shown that the present method is efficient and robust for the prediction of complicated unsteady rotor-fuselage aerodynamic interaction phenomena.

Dynamic Characteristics Analysis of the Cryogenic Nitrogen Injection of Swirl Injector using POD and DMD (POD와 DMD를 이용한 와류형 분사기의 극저온 질소 분무 동적 특성 분석)

  • Kang, Jeongseok;Sung, Hong-Gye;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-9
    • /
    • 2017
  • The cryogenic nitrogen spray of a swirl injector has been numerically investigated using three dimensional LES turbulence model to analyze the dynamic characteristics under supercritical condition. To predict the precise nitrogen properties under supercritical condition, SRK equation of state, Chung's method for viscosity and thermal conductivity and Takahashi's correlation based on Fuller's theory for diffusion coefficient are implemented. The complex flow structures due to interaction between flow field and acoustic field are observed inside and outside the injector under supercritical condition. FFT, POD, and DMD techniques are employed to understand the coherent structures. By implementing the FFT, the dominant frequencies are identified inside and outside the injector. The coherent flow structures related to the dominant frequencies are visualized using the POD and DMD techniques. In addition, the DMD provides the damping coefficient which is related with the instability prediction.

LES for Turbulent Duct Flow with Surface Mass Injection (질량분사가 있는 덕트 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.232-241
    • /
    • 2011
  • The hybrid rocket shows interesting characteristics of complicated mixing layer developed by the interaction between turbulent oxidizer flow and injected surface mass flow from fuel vaporization. In this study, the compressible LES was conducted to explore the physical phenomena of surface oscillatory flow induced by the flow interferences in a duct domain. From the numerical results, the wall injection generates the stronger streamwise vorticites and the negative components of axial velocity accompanied with the azimuthal vorticity near the surface. And the vortex shedding with a certain time scale was found to be developed by hydrodynamic instability in the mixing layer. The pressure fluctuations in this calculation exhibit a peculiar peak at a specific angular frequency($\omega$=8.8) representing intrinsic oscillation due to the injection.

Identification of the Moving Noise Source in a Circular Sawblade by the Experimental Acoustic Intensity Technique (음향인텐시티법에 의한 원형 톱날에서의 이동소음원 규명)

  • 오재응;김동규;하범성;원선희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.6
    • /
    • pp.82-100
    • /
    • 1991
  • 본 연구에서는 회전톱날에서 발생하는 공기소음원 규명의 실현가능성을 검토하였다. 음향인텐시 티법은 3차원 선도, 인벤시티 벡터에너지선도, 동고선도 등의 표현에 유용한 장점을 갖고 있다. 근거리 음장 거동에 대한 추정, 주파수영역에서의 벡터 또는 스칼라 음향인텐시티는 소음원규명의목적으로 사 용되는 측정기법이다. 결과에 따르면 난류는 원형톱날의 이 부근에 나타나며, 톱날의 변동압력 측정에서 와류구조의 영향에 대한 근거는 측정된 음향인텐시티에 의해 도출된다. 도한 회전속도가 증가함에 딸k, 상호작용은 도플러현상을 일으키는 중요한 소음메타니즘이 될 수 있다.

  • PDF

The Study of the Interaction between Dual Spray by Two Swirl Injectors (이중 선회 분무간의 상호작용에 관한 연구)

  • Park, B.S.;Lee, D.J.;Kim, H.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.141-148
    • /
    • 2002
  • Experimental investigation of the interaction between dual spray formed by swirl type injector was conducted. Experimental parameter was fuel temperature, varied in the range from $-20^{\circ}C$ to $120^{\circ}C$. Measuring parameter were vertical distance from injector tip to patternator and gap between injectors. Volumetric distiribution and SMD were measured for the various combination of parameters. The results of present study show that the arithmetic sum of each of spray is not equal to dual spray, but it is equal above specific fuel temperature. As the increases of fuel temperature, SMD decreases and becomes more uniform. As the increases of gap between injectors, fuel volume and SMD at collision area increases, but penetrated fuel decreases.

  • PDF

Numerical study on the oblique shock wave/vortex interaction (경사충격파와 와류 상호작용에 대한 수치적 연구)

  • Mun, Seong-Mok;Kim, Jong-Am;No, O-Hyeon
    • 한국항공운항학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.240-246
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic model. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach are used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vertex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the ${\kappa}-{\omega}SST$ turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

  • PDF

Visualization of Internal Flows in Sub-scaled Wall Injection Test model of SRM (고체로켓모터의 축소형 표면분사 시험모델에서의 내부유동 가시화)

  • Kim, Do-Hun;Cho, Yong-Ho;Lee, Yeol;Koo, Ja-Ye;Kim, Yoon-Gon;Kang, Moon-Jung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.225-227
    • /
    • 2011
  • The geometrically sub-scaled wall-injection test model was employed to visualize interactions of internal flow of a solid rocket motor equipped fin/slot grain and submerged nozzle. Symmetric vortex and circumferential flow patterns were visualized.

  • PDF

Validation of the aeromechanics for hingeless rotor using geometrically exact beam model (기하학적 정밀 보 모델을 이용한 무힌지 로터 구조/공력 하중 검증)

  • Han-Yeol Ryu
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • This paper studied HART II in descending flight using rotorcraft analysis code based on geometrically exact beam (GEB) model. The present GEB model expressed by a mixed variational formulation could capture the geometrically nonlinear behavior of the blade without arbitrary assumptions. In previous results, correlation of airloads with structural moments for HART II was not as good as blade deflections. However, in present results, predictions of airloads and structural loads are fairly correlated with measured data.