• Title/Summary/Keyword: 와류 배출

Search Result 29, Processing Time 0.02 seconds

A Numerical Study on the Basic Design of Scrubber for Marine Diesel Engines (선박 디젤기관 스크러버의 기초설계에 관한 수치적 연구)

  • Lee, Won-Ju;Kim, In-Su;Choi, Yong-Seok;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.549-557
    • /
    • 2017
  • Numerical studies have been carried out on scrubbers, which are after-treatment devices to satisfy strengthened emission regulations for sulfur dioxide and particulate matter. We investigated the problems with existing scrubbers through numerical analysis and designed and analyzed a new swirl-type scrubber that could solve these problems. As a result, with the swirl-type scrubber, exhaust gas formed a vortex in the lower part of the device, and some of this gas was released along the guide vane through the bottom surface. In this case, the pressure gradient in the vertical direction was not large, but a pressure difference between the inside and outside of the baffle was generated. The shape of the exhaust gas stream was investigated, and when water was not sprayed, the exhaust gas flowed constantly to the outlet along the guide vane, in contrast to when water was sprayed. It was confirmed that the shape of the flow was influenced by the guide vane, nozzle arrangement and water pressure. In the case of the swirl-type scrubber, impact on engine back-pressure was minimal, because differential pressure at the inlet and outlet was less than half of that with a conventional scrubber.

Hydraulic Performance Analysis of Tangential Vortex Intakes with Compound Section by Three-Dimensional Numerical Simulation (3차원 수치모의에 의한 복단면 형상의 접선식 와류 유입구 수리 특성 분석)

  • Lee, Du Han;Rhee, Dong Sop;Kim, Myounghwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.506-514
    • /
    • 2014
  • Recently the interest about the vortex intakes are rapidly increased because of its performance to drain a plenty of collected storm water at a time. The tangential intake a kind of vortex intakes is very applicable because this type is very simple and little against other types, but it has a big weakness that the vortex flow is not been rarely created below the design discharge. In this study, the characteristics of a tangential intake and two kinds of a newly suggested compound section type intake are analyzed by the 3D numerical modeling based on theories about the control shift and free drainage condition. The analysis focused on the flow condition, flow surface formation, depth-discharge relation, area ratio of air core. Based on this study, the mild-sloped compound section type intake is the optimal, but steep-sloped compound section type is also the optional for the small design discharge.

An Analysis of Flow and Noise for Vacuum Cleaner Centrifugal Fan (진공청소기 원심팬의 유동과 소음 해석)

  • 전완호;이덕주;유기완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.130-135
    • /
    • 1995
  • 본 연구에서는 30000rpm으로 회전하는 진공청소기 원심팬의 유동장을 임펠러, 디퓨저, 케이싱을 모두 고려하여 해석하였다. 또한 삼차원으로 배출되는 출구를 간단한 sink 패널로 모델하여 출구의 효과를 충분히 고려하였다. 해석된 유동장 자료를 이용하여 먼 거리에서의 음압을 예측하였다. 예측된 음압자료는 FFT를 이용하여 측정된 값과 주파수 영역에서 비교하였다. 또한 진공청소기 원심팬의 측정자료에서 보이는 광역소음특성이 임펠러에서 흘려지는 후류와류의 교란에 의한 임펠러와 디퓨저 깃의 비정상 힘이 주된 원인임을 밝혔다.

  • PDF

Numerical Simulation of Square Cylinder Near a Wall with the ε -SST Turbulence Model (ε -SST 난류 모델을 적용한 벽면 근처 정사각주 유동장의 수치 해석)

  • Lee,Bo-Seong;Kim,Tae-Yun;Park,Yeong-Hui;Lee,Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.1-7
    • /
    • 2003
  • The numerical simulation of flow-filed around a square cylinder near a wall with $\varepsilon$-SST turbulence model is carried out in this study. The newly suggested $\varepsilon$-SST turbulence model that modifies the original SST turbulence model is proved to yield more accurate results than the other 2-equation turbulence models in large separation region around a bluff body. Therefore, $\varepsilon$-SST turbulence model can be effectively applied for predicting the flow-fields with large separation. And it is found that vortex shedding is suppressed below the critical gap height, the Strouhal number is affected by the gap height and the wall boundary layer thickness.

A Study on Combustion And Exhaust Emissions of Diesel Engine -For Gas Oil-Water Emulsified Fuel- (디젤 기관의 연소와 배출물에 관한 연구 -경유-물물의 유화연료 사용시-)

  • 조진호;김형섭;박정률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.180-188
    • /
    • 1992
  • By means of the compatibility according to solving environmental pollution and energy problem due to the emissions of NOx and smoke from diesel engine this paper experimentally inspected the effect of using emulsified fuel, gas oil-water, for combustion characteristic, that is combustion pressure, pressure rise rate, heat generating rate, the period of ignition delay and specific fuel consumption, and CO, HC, NOx concentration and smoke density. When using emulsified fuel, as a water addition rate was increased, combustion pressure, pressure rise rate and heat generating rate was increased, the period of ignition delay was lengthening, the specific fuel consumption was some what increased in contrast to diesel fuel in low load, but deceased in high load region. And NOx concentration was decreased, CO concentration was increased in low load, but decreased in high load region, HC concentration was increased in contrast to diesel fuel in all region.

Flame-Vortex Interaction and Mixing in Turbulent Hydrogen Diffusion Flames with Coaxial Air (동축공기 수소확산화염에서 화염-와류 상호작용 및 혼합)

  • Kim, Mun-Ki;Oh, Jeong-Seog;Choi, Young-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.149-154
    • /
    • 2007
  • This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen nonpremixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NOx emissions. Acoustic excitation causes the flame length to decrease by 15 % and consequently, a 25 % reduction in EINOx is achieved, compared to a flame without acoustic excitation. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NOx emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface.

  • PDF

Development of Mobile Vortex Wet Scrubber and Evaluation of Gas Removal Efficiency (기체상 유해화학물질 제거를 위한 이동형 와류식 세정장치 개발 및 가스 제거효율 분석)

  • Kwak, Ji Hyun;Hwang, Seung-Ryul;Lee, Yeon-Hee;Kim, Jae-Young;Song, Ki Bong;Kim, Kyun;Kang, Jae Eun;Lee, Sang Jae;Jeon, Junho;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.134-138
    • /
    • 2015
  • BACKGROUND: In recent years, several researchers have focused on odour control methods to remove the harmful chemicals from chemical accidents and incidents. The present work deals with the system development of the hazardous. METHODS AND RESULTS: For on-site removal of hazardous gaseous materials from chemical accidents, mobile vortex wet scrubber was designed with water vortex process to absorb the gas into the water. The efficiency of the mobile vortex wet scrubber was evaluated using water spray and 25% ammonia solution. The inlet air velocity (gas flow rate) was according to the damper angle installed within the hood and with increase of gas flow rate, consequently the absorption efficiency was markedly decreased. In particular, when 25% ammonia solution was exposed to the hood inlet for 30 min, the water pH within the scrubber was changed from 7 to 12. Interestingly, although the removal efficiency of ammonia gas exhibited approximately 80% for 5 min, its efficiency in 10 min showed the greatest decrease with 18%. Therefore, our results suggest that the ammonia gas may be absorbed with the driving force of scrubbing water in water vortex process of this scrubber. CONCLUSION: When chemical accidents are occurred, the designed compact scrubber may be utilized as effective tool regarding removal of ammonia gas and other volatile organic compounds in the scene of an accident.

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

Study on the Effect of Wake Control Devices on Ship Performance Components (반류제어장치의 선박성능요소에 미치는 영향에 대한 고찰)

  • Lee, Yeon-Seung;Choi, Young-Bok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.453-459
    • /
    • 2009
  • The DSME guide plate(GP) has been developed with the target to improve the cavitation and vibration performance when used with discharging cooling water around the outlet of LNG carrier. It was proven that it could as well be applied as a powerful wake control device on its own, even without discharging cooling water. However, it has to be taken into account that it inevitably results in speed loss. This study shows the possibility to design a GP which simultaneously improves both vibration and speed performance. The study intends to outline how to design the preliminary GP configurations from both the vibration and the speed performance points of view. Further, the study offers design guidance for the hull form and the propeller when adapting GP as a wake control device.

An Experimental Research on Performance and Emission Characteristics of Direct-Injection Diesel Engines with Annular Two-stage Combustion Chamber (환상 2단연소실을 갖는 직접분사식 디젤기관의 성능 및 배출물 특성에 관한 실험적 연구)

  • Kim, D.H.;Bae, J.U.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.12-18
    • /
    • 2003
  • Various measures have been tried to reduce the NOx emission from diesel engine, but with partial success because the mechanisms of NOx and PM formations appear to have trade-off relation between each other. Therefore it has been known to be difficult to reduce NOx emission and PM emission simultaneously. Two stage combustion method i,e. a combustion process which has rich combustion stage and lean combustion stage one by one, has been developed successfully to reduce NOx formation in the continuous combustion chambers such as in the boilers. But until yet it is not successful to apply the same method in intermittent combustion chamber like in the diesel engine cylinder, as it was, only several research works were carried out. In this study, devised was a uniquely shaped combustion chamber with reformed piston crown intended to keep fuel-rich condition during early stage of combustion and fuel-lean condition during next stage. It was found that the NOx emission decreased significantly at various conditions of operation with the two stage combustion type engines of PR20 type, but other values such as smoke, CO and specific fuel consumption deteriorated as usual.

  • PDF