• Title/Summary/Keyword: 와류분포

Search Result 123, Processing Time 0.023 seconds

The Characteristics of a Fishing Ground at Yeosu Bay - Pound Net Fishing Ground - (여수해만의 어장학적 특성 - 정치망 어장을 중심으로 -)

  • 김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.44-53
    • /
    • 1989
  • In order to grasp the characteristics of a fishing ground at yeosu bay, the fluctuation in condition of the coast and that in catch by pound nets in the coast were investigated respectively. The results obtained are summarized as follows: 1. The water temperature in spring and summer was higher at the coast side than off shore, but in autumn and winter took the reverse. 2. The salinity was higher in spring and winter than in summer and autumn. A lower salinity zone was found at the Dolsan Do coast and higher ones were made off shore. 3. A eddy current was found at the Dolsan Do coast and a thermocline were made at the depth of 30 to 40 m in summer. But in autumn and winter the water became homogeneous. 4. The annual catch by the pound net was highest in 1984 and then decreased gradually. The monthly catch was highest in June and then decreased gradually. 5. The catches seemed to increase with the sea water temperature and salinity, and great catch was shown in 21$^{\circ}C$ to 27$^{\circ}C$ and 33.80% to 34.00%. 6. The component rate of fishes was 28.4% in spanish mackerel, 17.9% in anchovy, 19.5% in horse mackerel, 21.0% in sardine, 7.2% in hairtail, and 1% in common mackerel. 7. The fishes appeared continuously on way of fishing operation were spanish mackerel, hairtail, Yellow talil, crab, etc. An anchovy and sardine were caught mainly from March to July or August, horese mackerel and common mackerel from May to November. but puffer, swell fish, saury and filefish were caught mainly from April to October. 8. The sum of catch was largest in June, at which the wind direction was NE to SSW, the speed below 3.2m/sec, the atmospheric pressure below 1008mb, and precipitation beyond 154mm.

  • PDF

Assessment of Depth-averaged Velocity Conversion Factors Using Measured Depthwise Velocities in a Natural River (하천의 수심별 유속측정자료를 이용한 수심평균유속환산계수 산정)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.308-308
    • /
    • 2011
  • 하천에서 유량을 산정하기 위해서 전자파표면유속계를 이용하여 표면유속을 측정하고 수심평균유속환산계수 0.85를 일률적으로 적용하여 수심평균유속을 산정하고 있다. 이 수심평균유속환산계수 0.85의 적절성에 대한 논의가 지속되어져 왔으나 그 동안에는 이에 대한 현장검증을 할 수 있는 방법이 없었던 실정이다. 하지만 최근 들어서는 ADCP(Acoustic Doppler Current Profiler)의 하천용 Application인 StreamPro ADCP가 개발되어 이를 이용하면 홍수기에 수심별 유속을 측정할 수 있다. 다만 홍수기에 StreamPro ADCP의 적용시에는 여러 가지 높은 위험성이 상존하는 것은 인지의 사실이지만, 그 외의 별다른 방법이 없는 실정이다. 따라서 홍수기에 StreamPro ADCP를 이용하여 수심별 유속을 측정하고 이와 동시에 측정한 표면유속을 이용하여 수심평균유속환산계수를 산정하여 기존에 환산계수로 적용하고 있는 0.85의 적절성을 파악하고자 하였다. 흐름조건별 수심평균유속환산계수 산정을 위하여 평수기 용담 수자원시험유역의 동향지점에서 수심평균유속환산계수를 산정한 결과 0.632~1.352로 넓게 분포하고 있음을 파악하였다. 이렇게 계수가 실제 적용하는 0.85와는 크게 차이가 나는 이유로는 수심이 얕아서 바닥마찰의 영향이 크기 때문인 것으로 판단되었다. 이에 본 연구에서는 여러 지점에서 홍수기 수심별 유속의 실측을 통하여 수심평균유속환산계수 분포정도를 산정하고자 하였다. 대청댐 상류의 수통수위표가 위치해 있는 적벽대교지점에서 StreamPro ADCP를 이용하여 수심평균유속환산계수를 산정한 결과 0.735~0.986 사이에 분포하고 있다. 측정한 결과의 수심평균유속환산계수의 평균값은 0.853으로 기존에 수심평균유속의 산정을 위하여 적용하고 있는 0.85와 거의 일치함을 보이고 있다. 측정당시 수심이 3.6 m에 이르고 있고 유속 또한 1.55 m/s에 이르고 있어 홍수시 일반하천에서 발생하는 수위와 유속임을 감안할 때, 0.735~0.986의 수심평균유속환산계수는 홍수시 순간적인 변화의 폭이 큼을 알 수 있다. 이렇게 순간적인 변화가 큰 이유로는 난류의 성분이 강해서 나타나는 것으로 이를 평균하면 0.853으로 나타나고 있어 홍수시에 수심평균유속환산계수를 0.85를 사용하여도 무방함을 알 수 있다. 동향지점에서 홍수기에 수심별 유속의 실측을 통하여 수심평균유속환산계수를 산정하고자 하였다. 그러나 이 지점은 강한 와류로 인하여 ADCP가 심하게 흔들림으로 인하여 순간적인 유속의 차이가 최대 4배까지 보임을 알 수 있다. 이로 인하여 수심평균유속환산계수의 범위는 0.233~0.983에 이른다. 측정당시 표면유속이 2.07 m/s 인 것을 감안하여 이 표면유속에 상응하는 수심별 유속 자료만을 이용하여 산정시, 수심평균유속환산계수는 0.876이다. 하천의 하류지점에서 수심별 유속을 측정하여 수심평균유속환산계수를 산정하고자 한강하류로 유입하는 굴포천의 구교 및 박촌1교 지점에서 유속측정을 실시하였다. 이들 두 지점은 홍수기에 조차도 유속이 1 m/s 에 이르지 못하는 지점으로, 수심평균유속환산계수를 산정한 결과 각각 0.826, 0.833을 나타내고 있어, 수심평균유속환산계수 0.85가 홍수기뿐만 아니라 평 갈수기에도 적용할 수 있는 가능성을 확인하였다.

  • PDF

Analysis of Hydraulic effects on Piers and Transverse Overflow Type Structures in Urban Stream (도시하천의 교각 및 횡단 월류형 구조물에 의한 수리영향 분석)

  • Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.197-212
    • /
    • 2008
  • Recently, stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many condition limits. In this study, FLOW-3D using CFD (Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS (Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behaviors and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG (Renormalized Group) ${\kappa}-{\varepsilon}$ and LES (Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the piers and transverse overflow type structures. These results will be able to used by basis data that catch hold of effects on long-term bed elevation changes, sediment accumulations, scours and water aggravations by removal of obsolete transverse over flow type structures in urban stream.

Numerical Investigation of Flow Structures near Various Nozzle Exit Geometries of the Air Bearing (공기베어링의 노즐 형상 변화에 따른 출구면 근방의 유동구조에 대한 수치해석)

  • Park, Byung Ho;Han, Yong Oun;Park, Sang-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 2014
  • To investigate pressure distributions on the shaft surface of the air bearing, the commercial CFD software was employed to study three different nozzle geometries to improve the nozzle performance: general drill-shaped, matched cube-shaped and trimmed exit nozzles. Under the influence of stagnation point, the maximum pressure was observed at the center of shaft surface for all cases. Owing to the blocking effect of a fine gap between the shaft surface and the nozzle exit, the drill-shaped nozzle has the rapid local pressure increase near the nozzle exit corner, generating the ring vortex in the radial direction within pressure ratio of 6.92, and its pressure becomes negative in a certain range of downstream. In comparison, the contoured nozzle showed a local pressure increase in the measured range of pressure ratios, but a negative pressure appeared within the pressure ratio of about 10. The trimmed nozzle was seemed to extend the high pressure zone near the stagnation point in the radial direction substantially, and no negative pressure was appeared in the whole range. Based on these observations, it is found that trimming nozzle exit becomes more effective for improving the performance than modifying the nozzle inside contour.

Performance Analysis for Turbo Blower According to Inlet-Vane Angles (입구베인 각도에 따른 터보블로어 성능특성 연구)

  • Jang, Choon-Man;Lim, Soo-Jung;Yang, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Turbo blowers are mainly used in refuse collection systems. We discuss blower performance in relation to the angle of the inlet vane installed at the upstream of the blower. The flow characteristics of the components are analyzed by three-dimensional Navier-Stokes analysis and compared to experimental results. A two-stage serially connected turbo blower is introduced to analyze the performance experimentally. Throughout the experimental measurements and the numerical simulation, the distorted inlet velocity generated in the small vane angle reduces the performance of the blower, because of the local leading-edge separation and the resulting non-uniform blade loading. We also perform a detailed flow analysis using the results obtained in the numerical simulation.

Analysis of Three-Dimensional Profile of Bacterial Colony and Visualization of Fluidic Biofilm Using Fluorescent Microbeads (형광 미세입자를 이용한 박테리아 군집의 3차원 형상 분석 및 유동성 생물막의 가시화)

  • Kim, Kyung-Hoon;Park, Eun-Jung;Kim, Jung-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1119-1126
    • /
    • 2012
  • The collective behavior of bacteria plays an important role in biofilm development. In this study, the fluidic properties of biofilms formed in Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) colonies were compared by visualizing 200-nm fluorescent beads that were initially embedded in an agar plate and distributed spontaneously on the upper surface of the growing colonies. We conducted experiments to measure the three-dimensional profile of the E. coli colony using fluorescent microbeads that did not flow in the colony. Vortical flow patterns near the edge of the B. subtilis colony were observed clearly by tracking the movement of the beads in the biofilm of the colony. The present study should be the first step toward determining the effect of fluidic biofilms on the growth and swarming dynamics of bacteria.

PIV Applications for Flow Analysis of Floating Breakwater with double barriers (이흘수판형 부소파제 주위의 유동해석을 위한 PIV 적용)

  • Kim, Ho;Cho, Dae-Hwan;Lee, Gyoung-Woo;Gim, Ok-Sok
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.53-58
    • /
    • 2006
  • Along with the development of costal engineering, various type of breakwaters have been built. The main purpose of breakwaters are to provide harbour protection against waves, to stabilize beaches against erosion due to large wave action, and to provide for temporary wave protection for installation on or under water surface. This paper an application example of PIV system for analyzing the flow of Floating Breakwater with double barriers. We introduce an analysis method to predict the characteristics of flow around the neighboring fields of Floating Breakwater with double barriers in order to develop a high performance model. Flow visualization has conducted in circulating water channel by a high speed camera and etc. Flowing phenomenon according to velocity distribution and flow separation around the breakwater with double barriers were obtained by 2-D PIV system.

  • PDF

Simple Fabrication of Micromixer Based on Non-Equilibrium Electrokinetics in Micro/Nano Hybrid Fluidic System (단순공정으로 제작된 마이크로/나노 하이브리드 채널의 불균형 동전기성을 이용한 미세혼합기 연구)

  • Yu, Samuel;Kim, Sun-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this study, we developed a micromixer based on the non-equilibrium electrokinetics at the junction of a microchannel and nanochannel. Two fluid streams were mixed by an electro-osmotic flow and a vortex flow created as a result of the non-equilibrium electrokinetics at the junction of the microchannel and nanochannel. Initially, the microchannel was fabricated using Polydimethylsiloxane (PDMS) by the general soft lithography process and the nanochannel was created at a specific position on the microchannel by applying a high voltage. To evaluate the mixing performance of the micromixer, fluorescent distribution was analyzed by using the fluorescent dye, Rhodamine B. About 90% mixing was achieved with this novel micromixer, and this micromixer can be used in microsystems for biochemical sample analysis.

Reverse-Engineering and Analysis of Performance for Medium-Altitude Long Endurance Unmanned Aerial Vehicle (중고도-장기체공 무인비행을 위한 비행체 성능 분석 및 역설계)

  • Shim, Ho-Joon;Chang, Kyoungsik;Chung, In Jae;Kim, Sun-Tae;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.520-529
    • /
    • 2016
  • The main purpose of this study was to analyze the performance of a medium-altitude long endurance unmanned aerial vehicle through reverse-engineering method. The external configuration data of the RQ-1 Predator was reverse-engineered from related photos and specification data available on public domains, which also were used to generate the CATIA modeling and weigh distribution data of the UAV. The aerodynamic characteristics of RQ-1 Predator were mainly predicted the vortex lattice method and an empirical method, which the propeller performance was analyzed by the empirical method proposed by Howe. The rate of climb, service ceiling, range, and the loiter endurance of the UAV was analyzed, which showed good agreement with the reference data.

Variation and Structure of the Cold Water Around Ganjeol Point Off the Southeast Coast of Korea (하계 용승현상에 따른 간절곶 주변해역의 냉수역 구조와 변동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.836-845
    • /
    • 2016
  • The variation and structure of the cold water mass around Ganjeol Point during the summer of 2011 were studied using data from CTD observations and temperature monitoring buoys deployed at 20 stations off the southeast coast of Korea. There was a $-12^{\circ}C$ surface temperature difference between the cold water mass and normal water during the monitoring period. Variations in the isothermal lines for surface temperature along the coast showed that the seabed topography at Ganjeol Point played an important part in the distribution of water temperature. Cold water appeared when the wind components running parallel to the coast had positive values. The upwelling -response for temperature fluctuations was very sensitive to changes in wind direction. Vertical turbulent mixing due to the seabed topography at Ganjeol Point can reinforce the upwelling of cold bottom water. From wavelet analysis, coherent periods found to be 2-8 days during frequent upwelling events and phase differences for a decrease in water temperature with a SSW wind were 12-36 hours.