• Title/Summary/Keyword: 옹벽기초

Search Result 63, Processing Time 0.022 seconds

Case study on the foundation of a retaining wall for disaster prevention (재난에 대비한 보강토옹벽 기초의 사례연구)

  • Kim, Joon-Seok
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.195-196
    • /
    • 2017
  • 연약한 지반 위에 시공되는 보강토 옹벽이 연약지반의 침하에 대하여 안정성을 분석하고 지반의 처리를 어떻게 하는 것이 향후 재난발생을 예방할 수 있는지에 대하여 침하량을 분석하고 대처 방법에 대하여 분석하였다.

  • PDF

A Case Study on Ground improvement of a Retaining Wall Foundation by Using High Pressure Grouting (고압분사공법을 이용한 옹벽기초지반 보강 사례)

  • Park, Jong-Ho;Jang, Sun-Cheul;Park, Chang-Hun;Yoon, Hee-Kyung
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.199-209
    • /
    • 2006
  • 현재 연약지반의 개량 및 구조물기초 지반의 보강을 위하여 약액주입공법 및 고압분사주입공법 등의 주입공법이 널리 행해지고 있는 실정이다. 이에 본 연구에서는 00교 교대 전면 옹벽기초 하부지반을 고압분사주입공법을 이용해 보강한 사례로서 설계 및 시공, 시험 자료를 분석하고, 보강작업에 따른 지반의 개량효과를 분석하였다. 개량효과학인을 위한 시추조사와 시추공영상 촬영 이미지 관찰결과에서는 고압분사에 의해 양호한 상태의 고결체(토사 + 시멘트 페이스트)가 형성되었음을 확인 할 수 있었으며, 고결체와 원지반의 복합지반상에서 실시한 평판재하시험 결과 및 시추조사시 채취된 고결체 Core에 대해 실시한 일축압축강도시험 결과에서도 설계시 가정한 값을 모두 만족하는 것으로 나타나 연약지반의 강도가 개량되어 안정성을 확보한 것으로 확인되었다.

  • PDF

A Study on Settlement according to Height and Ground stiffness on the MSEW on the IPM Bridge (토압분리형 교량의 보강토옹벽의 높이와 기초지반 강성에 따른 침하량 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • The mechanically stabilized earth wall (MSEW) of the IPM bridge is an important structure that constitutes the bridge, and supports the horizontal earth pressure and approach slab. Therefore, it is necessary to carefully analyze the settlement of MSEW of the IPM bridge. This study examined the settlement according to the height and ground stiffness on the MSEW on the IPM Bridge. According to the design guideline, the IPM Bridge (2016) was designed to have a height of 4.0 ~ 10.0m and the elastic settlement was calculated. The base area and the grounding pressure of the MSE wall increased linearly with the height, and the elastic settlement also increased linearly. In addition, the stiffness of the foundations satisfying the allowable settlement of the approach slab is a N value of 35 or more. The settlement of finite element analysis was estimated to be smaller than the elastic settlement, and the stiffness of the foundation ground satisfied the allowable settlement of the approach slab above N value of 20. Because the elastic settlement of the MSEW of the IPM Bridge was overestimated, it will be necessary to examine it carefully by finite element analysis.

Behavior of Geosynthetic Reinforced Modular Block Walls with Settlement of Foundation (기초지반의 침하가 계단식 보강토 옹벽의 거동에 미치는 영향)

  • Yoo, Chung-Sik;Jung, Hye-Young;Song, Ah-Ran
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.13-21
    • /
    • 2005
  • This paper presents the results of an investigation on the effects of settlement of foundation on the behavior of geosynthetic-reinforced modular block walls in a tiered arrangement using the finite-element method of numerical analysis. A parametric study was performed by varing the foundation condition and offset distance between the tiers and reinforcement length of the lower and upper tier using varified finite-element model. The finite-element analysis provided relevant information on the mechanical behavior of the wall and interaction mechanism between the upper and lowers that was otherwise difficult to obtain from the limit-equilibrium analysis based current design approaches. Practical implications of the findings obtained from this study to current design approaches are discussed in great detail.

  • PDF

Centrifuge Model Tests on Sliding Behavior of Cantilever Retaining Wall due to Surcharges (과재하중에 의한 역T형 옹벽의 활동거동에 관한 원심모형실험)

  • 유남재;유건선;이명욱;이종호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.153-160
    • /
    • 2000
  • 본 연구는 과제하중의 재하폭과 재하위치를 매개변수로 변화시켜 옹벽의 뒤채움재 상부 지표면에서 제한폭의 과재하중작용시 그의 활동거동에 관한 실험적, 수치적 해석적 연구이다. 중력 수준을 1g, 20g,40g로 변화시켜 수행한 원심모형실험을 통해 구한 기초의 극한지지력 및 하중-침하특성, 하중-옹벽수평변위특성에 관하여 조사연구 하였다. 또한, 옹벽의 활동으로 인한 지반파괴의 영향을 받기 시작하는기초의 재하위치를 추정하기 위하여 종래의 얕은 기초의 극한지지력 실험을 수행하여 이들 결과와 함께 비교하였다. 한편, 모형실험결과와 기존의 이론식을 수정보완한 해석 결과와 비교분석하였다.

  • PDF

Effect of Foundation Stiffness on Behavior of Soil-reinforced Segmental Retaining Walls (기초지반의 강성이 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.7-19
    • /
    • 2002
  • This paper presents the results of an investigation on the effect of foundation stiffness on the performance of soil-reinforced segmental retaining walls (SRWalls). Laboratory model tests were performed using a reduced-scale physical model to capture the fundamentals of the manner in which the foundation stiffness affects the behavior of SRWalls. A series of finite-element analyses were additionally performed on a prototype wall in order to supplement the findings from the model tests and to examine full-scale behavior of SRWalls encountered in the field. The results of the present investigation indicate that lateral wall displacements significantly increase with the decrease of the foundation stiffness. Also revealed is that the increase in wall displacements is likely to be caused by the rigid body movement of the reinforced soil mass with negligible internal deformation within the reinforced soil mass. The findings from this study support the current design approaches, in which the problem concerning the foundation condition are treated in the frame work of the external stability rather than the internal stability. The implications of the findings from this study to current design approaches are discussed in detail.

Estimation of Reliability Level and Applicability of LRFD Based on Standard Drawings of Railway Cantilever Retaining Walls (철도 옹벽 표준도의 신뢰도수준 및 LRFD 적용성 평가)

  • Kim, In-Soo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.61-76
    • /
    • 2015
  • Recently, geotechnical engineering researches have been conducted on the Limit State Design (LSD) for deep and shallow foundations; however, there are very few studies on the retaining wall. As a basic study for the introduction of the LSD of a railway retaining wall, this study evaluates whether the reliability index satisfies the target reliability index for each failure mode in the standard drawing of the retaining wall. It also analyzes the feasibility of the LSD method by using the Load and Resistance Factor Design (LRFD) for the standard drawing of a retaining wall. In a portion of the standard drawing of the railway retaining wall, the reliability indices of the sliding and bearing capacity failure modes did not satisfy the target reliability index, and could not satisfy the limit state by the LRFD. Hence, the standard drawing of the railway retaining wall will need to be revised if the LSD is to be applied.

Assesment on the Characteristics of Foundation Bearing Capacity in Reinforced Soil Wall Structure of Large Scale (대규모 보강토옹벽 구조물에서의 기초지반 지지력특성 평가)

  • Han, Jung-Geun;Yoo, Seung-Kyung;Cho, Sam-Deuk;Lee, Kyang-Woo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • The reinforced soil retaining wall structures of serious types with environmental are widely expanding more and more in Korea, which divided conventional type's reinforced soil retaining wall on segmental retaining wall. The causes of most crack occurred at block in reinforced soil retaining wall structure caused by the differential settlement of foundation. It is difference of settlement for significant factor that with overall slope stability. In this study, design assessment of foundation bearing capacity related to differential settlement of foundation ground was considered. And, also, through case study, the countermeasure methods and its application were suggested that the bearing capacity of foundation had to stabilize. The foundation ground in charge of bearing capacity should be affected by the resisting force of sliding, because the foundation parts of reinforced soil retaining wall were belongs to potential slope sliding area in overall stabilizing including retaining wall structures. Therefore, the analyzing or the designing of bearing capacity for foundation should be considered control capacity on the overall slope sliding.

  • PDF

Earthquake-Resistant Design of Cantilever Retaining-Walls with Sloped Base (기초슬래브의 밑면이 경사진 캔티레바식 옹벽의 내진설계)

  • Kim, Hong Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.87-98
    • /
    • 1990
  • The present Study dealt with the earthquake-resistant design of cantilever retaining walls supporting cohesionless soils. With design examples of three different types of cantilever retaining walls, the factors of safety against sliding were computed at various values of horizontal acceleration coefficient and compared with each other. The horizontal inertia effect due to the weights of concrete wall itself and a portion of backfill was taken into account in the analyses, and also Mononobe-Okabe pseudo-static solution method was modified to deal with various states different from limiting equilibrium state. From the analyses of safety against sliding, it was found that a cantilever retaining wall with sloped base was the most efficient type in earthquake resistant design. It was also found that by sloping the base, the width of the base slab could be reduced, resulting in the least volume of concrete, excavation and backfill as compared to the other types of walls. In the case of a cantilever retaining wall with sloped feel, the efficiency similar to that of a wall with sloped base could be expected under static loading as well as at relatively low level of earthquake loading. However, this efficiency became vanished with the increase of horizontal acceleration coefficient, since the rate of reduction in developed earth pressures on the heel became smaller. In addition, the design charts with different soil friction angles as well as with different earthquake resistant design criteria of safety factor against sliding were presented for the design of cantilever retaining walls sith sloped base.

  • PDF