• Title/Summary/Keyword: 온톨로지 정렬오류

Search Result 3, Processing Time 0.015 seconds

A Study on an Automatic Alignment Method of Distributed Ontology by Using Semantic Distance Measure Method (의미거리측정방법을 활용한 분산 온톨로지 간 자동 정렬 방법 연구)

  • Hwang, Sang-Kyu;Byun, Yeong-Tae
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.4
    • /
    • pp.319-336
    • /
    • 2009
  • Semantic web technology is the evolution of current World Wide Web including a machine-understandable knowledge database, ontology, it may be enable machine and people to work together. However, problems arise when we try to communicate with different data, which are annotated by different ontologies created by different people with different concepts. Thus, to communicate between ontologies, it needs to align between heterogeneous ontologies. When it is aligned between concept nodes of heterogeneous ontologies, one of main problems is a misalignment situation caused by false negative of automatic ontology mapping. So, in this paper, we present a new method to minimize the false negative error in the process of aligning concept nodes of different ontology.

Ontology Alignment by Using Discrete Cuckoo Search (이산 Cuckoo Search를 이용한 온톨로지 정렬)

  • Han, Jun;Jung, Hyunjun;Baik, Doo-Kwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.523-530
    • /
    • 2014
  • Ontology alignment is the way to share and reuse of ontology knowledge. Because of the ambiguity of concept, most ontology alignment systems combine a set of various measures and complete enumeration to provide the satisfactory result. However, calculating process becomes more complex and required time increases exponentially since the number of concept increases, more errors can appear at the same time. Lately the focus is on meta-matching using the heuristic algorithm. Existing meta-matching system tune extra parameter and it causes complex calculating, as a consequence, the results in the various data of specific domain are not good performed. In this paper, we propose a high performance algorithm by using DCS that can solve ontology alignment through simple process. It provides an efficient search strategy according to distribution of Levy Flight. In order to evaluate the approach, benchmark data from the OAEI 2012 is employed. Through the comparison of the quality of the alignments which uses DCS with state of the art ontology matching systems.

온톨로지의 구축과 학습: 상하위 관계

  • Choe, Gi-Seon;Ryu, Beop-Mo
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.24 no.4 s.203
    • /
    • pp.24-30
    • /
    • 2006
  • 온톨로지의 기본개념, 응용 분야 및 학습 단계에 대하여 간단하게 설명하였고, 온톨로지 학습단계에서 전문 분야의 개념간 계층 관계 학습 방법에 대하여 자세하게 알아보았다. 전문분야 개념을 표현하는 전문 용어 사이의 계층 관계를 학습하는 방법은 크게 규칙 기반 방법, 통계 기반 방법 그리고 용어의 전문성과 유사도를 이용하는 방법으로 나눌 수 있다. 규칙 기반 방법은 비교적 정확한 결과를 얻을 수 있는 장점이 있지만 재현율이 낮은 단점이 있다. 기존은 통계 기반 방법에서는 재현율이 높은 장점이 있지만 정확률이 낮은 단점이 있다. 또한 이 방법에서는 순수하게 통계 정보만 이용하기 때문에 오류에 대한 분석이 어려운 단점이 있다. 용어의 전문성과 용어간 유사도를 이용한 방법에서는 용어의 전문성을 이용하여 기존의 계층 구조에서 상위에 후보를 선택하고, 용어간 유사도를 이용하여 선택한 후보를 정렬하여 최적의 후보를 찾는다. 이 방법은 상위어 선정 과정을 두 단계로 분리하여 수행하기 때문에 오류 분석이 용이한 장점이 있다. 향후 온톨로지 학습 과정에서 계층 관계뿐 아니라 인과 관계 및 다양한 관계의 학습과 관련된 연구가 진행되어야 한다.