• Title/Summary/Keyword: 온천법

Search Result 25, Processing Time 0.025 seconds

A Review of Magnetic Exploration in Korea (한국의 육상 자력탐사)

  • Park, Yeong-Sue
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.403-416
    • /
    • 2006
  • Magnetic method is rapid, cheap and simple geophysical exploration technique, and has wide range of applications such as resources prospecting, geological structure investigation and even geotechnical and environmental problems. Especially, aeromagnetics gives fundamental and useful geoscientific data fnr not only assessment of potential resources, but also national land planning. Magnetic method, perhaps the oldest geophysical technique, was relatively early introduced into Korea. Documents during Japanese occupation says that magnetic method was used for exploring metallic ore deposits and hot spring, and that a geomagnetic observatory was operated. From mid 1950's, after Korean War, magnetic explorations for natural resources such as metallic ore, uranium, coal, and groundwater were intensively executed for industrialization. Apache aeromagnetic survey project during $1958{\sim}1959$ and its ground follow-up surveys are typical and important cases in those days. Magnetic survey techniques were rapidly advanced during 1970's and 1980's with improvements of instruments, growth of geophysical manpower, and availability of computers. The national aeromagnetic mapping project by KIGAM in 1981 showed the improved technical capability of those days. Decline of mining industry since mid 1980's moved the exploration objects from traditional resources to new ones such as groundwater and geothermal resources, and applications to investigation of geological structure were revived. Recently appeared applications such as natural hazard assessment, and engineering and environmental studies increased the magnetic method's utility in the realm of exploration.

A Study of $^{222}Rn\;and\;^{226}Ra$ Analysis in the Groundwater by LSC (액체섬광계수기에 의한 지하수중의 $^{222}Rn$$^{226}Ra$ 분석법 연구)

  • Woo, Hyung-Joo;Yoon, Yoon-Yeol;Cho, Soo-Young;Chun, Sang-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.275-283
    • /
    • 1995
  • PERALS(Photon Electron Rejecting Alpha Liquid Scintillation) spectrometry coupled with solvent extraction method has been set up for the analysis of $^{222}Rn\;and\;^{226}Ra$ in the groundwater. This analytical method offers low background, better energy resolution and lower quenching problem than the other techniques. By the analysis of NIST SRM 4966 $^{226}Ra$ standard, the analytical accuracy and precision were found to be 3% and 1%, respectively, and the relative standard deviation of the recovery of Rn extraction between pH2 and pH10 was 7%. Detection limits of $^{222}Rn$ and $^{226}Ra$ for 10 hours counting were counted to be $0.42 pCi/{\iota}\;and\;0.016 pCi/{\iota}$, respectively. For the test analysis of $^{222}Rn\;and\;^{226}Ra$ in the graundwater, hot spring water samples of 17 regions were analyzed. The concentration of $^{222}Rn$ were in the range of $90{\sim}5200pCi/{\iota}$ and average value was $1470pCi/{\iota}\;^{226}Ra$ concentration showed a peak value of $97.9pCi/{\iota}$ in a Kangwon region, but the average value was $1.14pCi/{\iota}$ except that region.

  • PDF

Gene Cloning and Expression of Trehalose Synthase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 Trehalose Synthase의 유전자 클로닝 및 발현)

  • Kim, Hyun-Jung;Kim, Han-Woo;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • A hyperthermophilic bacteria (strain HJ6) was isolated from a hot springs located in the Arima-cho, Hyogo, Japan. The cells were long-rod type ($2-4{\mu}m$), about $0.4{\mu}m$ in diameter. The pH and temperature for optimal growth were 6.5 and $80^{\circ}C$, respectively. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that HJ6 belonged to the genus Thermus thermophilus (Tt). The gene encoding the Trehalose synthase (TS) was cloned and sequenced. The open reading frame (ORF) of the TtTS gene was composed of 2,898 nucleotides and encoded a protein (975 amino acids) with a predicted molecular weight of 110.56 kDa. The deduced amino acid sequence of TtTS showed 99% and 83% identities to the Thermus caldophilus TS and Meiothermus ruber TS, respectively. TtTS gene was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for Trehalose synthase activity were found to be $80^{\circ}C$ and 7.5, respectively. The half-life of heat inactivation was about 40 min at $90^{\circ}C$. The maximum trehalose conversion rate of maltose into trehalose by the enzyme increased as the substrate concentration increased, and reached 55.7% at the maltose concentration of 500 mM, implying that the enzyme conversion was dependent of the substrate concentration.

A Study on the Life Cycle Analysis of Domestic Tourist Areas (국내 관광지의 수명주기 분석 연구)

  • Kim, Jung Jae;Lee, Kyung Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.25-40
    • /
    • 2015
  • Korean tourist areas are designated/managed in accordance with the Tourism Promotion Act. Since Taejongdae was designated as a tourist area in 1969, a total of 230 tourist areas have been designated/built/operated. It has been 46 years since the first tourist area was designated. According to the Tourism Area Life Cycle by Butler, it is estimated that the flow of the life cycle will be reflected in ups and downs over time. Thus, this study aimed to provide basic data for suggesting the direction of changes and development of the future tourist areas after analyzing the life cycle stage of domestic tourist areas, by applying the Tourism Area Life Cycle by Butler. The research method was based on the tourist areas by year, the number of visitors, and data of the target to derive the change transition curve, obtained by dividing the life cycle stages of the tourist areas based on the visitor rate of change. In the analysis results, more than 1/3 of domestic tourist areas are reaching the stagnation/decline stage, and tourist areas such as hot springs and seaside/beach resources show a particularly high ratio of stagnation/decline. The tourist areas that already have reached the stagnation/decline stage will need to analyze the causes for the decline, seek for resolution measures, and introduce new innovative elements. Even though the results of this study are not sufficient to be used as an absolute standard to decide the life cycle stage of domestic tourist areas, it is considered to be adequate for phenomenologically understanding the life cycle stage of Korean tourist areas. Based on this study, the causes for the stagnation/decline of tourist areas can be revealed while it can be also used as basic research to establish revitalization measures for tourist areas by introducing new innovation.

Analysis of Distribution Characteristics of Flowrate and Water Quality in Tributary at Chungcheongnam-do (충청남도 지류하천의 유량 및 수질 분포특성 분석)

  • Park, Sang-Hyun;Moon, Eun-Ho;Choi, Jeong-Ho;Cho, Byung-Wook;Kim, Hong-Su;Jeong, Woo-Hyeok;Yi, Sang-Jin;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.739-747
    • /
    • 2011
  • The major 81 tributaries in Chungcheongnam-do were monitored for flowrate and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. The value of flowrate in the tributaries at Nonsancheon catchment at the Geum-River watershed and Gokgyocheon, Muhancheon, Sapgyocheon at the Sapgyo-Reservoir watershed, which is located in the southern and northern area in Chungcheongnam-do, was relatively greater than the other watersheds. The concentration of water pollutants regardless of water quality parameters in Nonsancheon catchment at the Geum-River watershed, Gokgyocheon catchment at the Sapgyo-Reservoir watershed and the Anseongcheon watershed, which have a dense source of pollution, were higher than the other watersheds. However, 64 percent of the tributaries at the Geum-River watershed, 45 percent of tributaries at the Sapgyo-Reservoir watershed, 26 percent of tributaries at the Geum-River watershed all satisfied the Class II regulations in the Framework Act on Environment Policy, but all of the tributaries located in the Anseongcheon watershed exceeded the Class II regulations. Therefore, the policy for improving the water quality of the tributary in Chungcheongnam-do should be established in the following order: Anseongcheon, Seohae, Sapgyo-Reservoir watersheds. Consequently, the tributary catchment for improving water quality, which has a large flowrate and a high concentration of water pollutants, was selected at Ganggyeongcheon, Geumcheon, Nonsancheon, Seokseongcheon, Seungcheoncheon, Jeongancheon, Jeungsancheon (so far Geum-River watershed), Gokgyocheon, Namwoncheon, Maegokcheon, Muhancheon, Sapgyocheon Oncheoncheon, Cheonancheon (so far Sapgyo-Reservoir watershed), Gwangcheoncheon, Dangjincheon, Daecheoncheon, Dodangcheon, Waryongcheon, Cheongjicheon, Pangyocheon, Heungincheon (so far Seohae watershed), Dunpocheon, Seonghwancheon, Ipjangcheon (so far Anseongcheon watershed). The plans as installation of environmental facilities to reduce the source of pollution for improving the water quality of these tributary catchments should be urgently established and implemented.