• Title/Summary/Keyword: 온실가스배출량

Search Result 830, Processing Time 0.032 seconds

An Analysis of the Jet Fuel Consumption and the GHG Emission by the Flight Phase (항공기 비행단계별 연료소비 분석 및 Tier 3 배출량 산정)

  • Lee, Ju Hyoung;Kim, Yong Seok;Shin, Hong Chul
    • Journal of Climate Change Research
    • /
    • v.5 no.1
    • /
    • pp.61-70
    • /
    • 2014
  • The amount of greenhouse gas (GHG) emissions has been increasing steadily over the last 3 years (2009~2011), averaging 5.7 percent a year, due to the growth of low cost carriers and the increased demand for air transportations. The present study attempts to investigate the aviation fuel consumption and GHG emissions of Tier 3a type by the flight phase from three aircraft type such as B737-600(routes between Gimpo-Jeju airport), B737-700(routes between Gimpo-Jeju airport and Inchon-Narita), B737-800(routes between Inchon-Narita) using the Flight Operation Quality Assurance(FOQA) data of the year 2011.

Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation (고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.886-891
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.

Analysis of Greenhouse Gas Reduction Potentials in a University using Bottom-up Model (상향식 모형을 이용한 대학의 온실가스 감축 잠재량 평가)

  • Yoo, Jung-Hwa;Park, Nyun-Bae;Jo, Mi-hyun;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.3 no.3
    • /
    • pp.183-193
    • /
    • 2012
  • In this study, the S University's energy usage, greenhouse gas emissions situation and potential reduction amount were analyzed using a long-term energy analysis model, LEAP. In accordance with the VISION 2020 and university's own improvement plans, S University plans to complete a second campus through expansion constructions by 2020 and by allocating the needed land. Accordingly, increases in energy usage and greenhouse gas emissions seem inevitable. Hence, in this study, the calculations of potential reduction amount by 2020 were attempted through the use of LEAP model by categorizing the energy used based on usage types and by proposing usage typebased reduction methods. There were a total of 4 scenarios: a standard scenario that predicted the energy usage without any additional energy reduction activity; energy reduction scenario using LED light replacement; energy reduction scenario using high efficiency building equipment; and a scenario that combines these two energy reduction scenarios. As scenario-based results, it was ascertained that, through the scenario that had two other energy reduction scenarios combined, the 2020 greenhouse gas emissions amount would be 14,916 tons of $CO_2eq$, an increase of 43.7% compared to the 2010 greenhouse gas emissions amount. Put differently, it was possible to derive a result of about 23.7% reduction of the greenhouse gas emissions amount for S University's greenhouse gas emissions amount through energy reduction activities. In terms of energy reduction methods, changing into ultra-high efficiency building equipment would deliver the most amount of reduction.

A Study on the Estimation of Greenhouse Gas Emission in Landfill Sites by LandGEM and Flux Measurement (LandGEM과 현장 실측에 의한 쓰레기매립장에서의 온실 가스 배출 특성)

  • 전의찬;서성은;사재환
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.426-427
    • /
    • 1999
  • 최근 자료에 의하면 우리나라의 온실가tm 총 배출량은 1990년을 기준으로 이산화탄소 6,927만 8천톤, 메탄 135만 2천톤, 아산화질소 1만 2천톤으로 추정되고 있다. 최근 증가 추세가 비교적 큰 것으로 알려진 메탄의 경우, 농업 분야와 폐기물매립 분야의 배출량이 전체 배출량의 80%를 차지하고 있다. 특히, 농업 분야의 산업 활동이 감소될 것으로 전망되고 있으므로, 폐기물 매립에 의한 메탄의 배출량은 그 비중이 더 커질 것으로 전망된다.(중략)

  • PDF

Analyzing Time in Port and Greenhouse Gas Emissions of Vessels using Duration Model (생존분석모형을 이용한 선박의 재항시간 및 온실가스 배출량 분석)

  • Shin, Kangwon;Cheong, Jang-Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.323-330
    • /
    • 2010
  • The time in port for vessels is one of the important factors for analyzing the operation status and the capacity of ports. In addition, the time in port for vessels can be directly used for estimating the greenhouse gas emissions resulted from vessels in port. However, it is unclear which variables can affect the time in port for vessels and what the marginal effect of each variable is. With these challenges in mind, the study analyzes the time in port for vessels arriving and departing port of Busan by using a parametric survival model. The results show that the log-logistic accelerated failure time model is appropriate to explain the time in port for 19,167 vessels arriving and departing port of Busan in 2008, in which the time in port is significantly affected by gross tonnage of vessels, service capacity of terminal, and vessel type. This study also shows that the greenhouse gas emission resulted from full-container vessels, which accounted for about 61% of all vessels with loading/unloading purpose arriving and departing port of Busan in 2008, is about "17 ton/vessel" in the boundary of port of Busan. However, the hotelling greenhouse gas emissions resulted from non-container vessels (3,774 vessels; 20%) are greater than those from the full-container vessels. Hence, it is necessary to take into account more efficient port management polices and technologies to reduce the service time of non-container vessels in port of Busan.

A Study on the Carbon Neutrality Scenario Model for Technology Application in Units of Space (공간 단위 탄소중립 기술적용 시나리오 모형(CATAS) 연구)

  • Park, Shinyoung;Choi, Yuyoung;Lee, Mina
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • 'Carbon-neutrality Assessment based on Technology Application Scenario (CATAS)' provides an analysis of greenhouse gas (GHG) reduction effectiveness when applying carbon-neutrality technology to areas such as energy conversion, transportation, and buildings at certain spatial levels. As for the development scope of the model, GHG emission sources were analyzed for direct GHG emissions, and the boundary between direct and indirect emissions are set according to the spatial scope. The technical scope included nine technologies and forest sinks in the transition sector that occupies the largest portion of GHG emissions in the 2050 carbon neutral scenario. The carbon neutrality rate evaluation methodology consists of four steps: ① analysis of GHG emissions, ② prediction of energy production according to technology introduction, ③ calculation of GHG reduction, and ④ calculation of carbon neutrality rate. After the web-based CATAS-BASIC was developed, an analysis was conducted by applying the new and renewable energy distribution goals presented in the 「2050 Greenhouse Gas Reduction Promotion Plan」 of the Seoul Metropolitan Government. As a result of applying solar power, hydrogen fuel cell, and hydrothermal, the introduction of technology reduced 0.43 million tCO2eq of 1.49 million tCO2eq, which is the amount of emissions from the conversion sector in Seoul, and the carbon neutrality rate in the conversion sector was analyzed to be 28.94 %.

New Computable General Equilibrium Analysis of the Effects of Greenhouse Gas Emissions Reduction Policies (새로운 연산가능일반균형모형을 이용한 온실가스 감축정책의 영향 분석)

  • Han, Minsoo;Moon, Jin-Young
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.169-205
    • /
    • 2021
  • This study quantitatively analyzes the impact of greenhouse gas (GHG) emissions reduction policies on the global economy. To this end, we develop a multi-national and multi-industry static computational general equilibrium model that includes three components-GHG emissions from production, disutility due to GHG emissions, and governments' GHG emissions reduction policies. Then we calibrate the model with the relevant data and solve for the equlibrium using the most recent methodology (exact hat algebra). We find that the strengthening of unilateral GHG emissions reduction policies for each country reduces carbon emissions from domestic producers, but does not necessarily reduce global carbon emissions as production is relocated to other countries. On the other hand, we can reduce GHG emissions when all major countries simultaneously implement the strengthened reduction policies proposed by the OECD (2016). Our results imply that aligned reduction efforts of major countries are necessary to reduce global GHG emissions.

A Study on The Greenhouse Gas Emission in Kyonggi-Do, 1999 (경기도의 온실가스 배출현황 연구 (1999년))

  • Choi, Sang-Jin;Jang, Young-Gi;Seo, Jung-Bae;Kim, Gwan;Shin, Mun-Gi;Sung, Hyun-Chan
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.59-60
    • /
    • 2001
  • 국제적으로 기후변화협약 의무이행체제가 구체화될 것으로 예상되고, 정부의 온실가스 저감시책을 차질 없이 추진하는데 적극 참여할 필요가 대두됨에 따라, 본 연구에서는 경기도의 온실가스 배출원을 파악하고 부문별 배출량을 산정 하여 경기도의 온실가스 배출특성을 분석하여, 저감방안을 모색하여 지구온난화에 능동적으로 대응할 수 있는 기초자료를 제공하고자 하였다. (중략)

  • PDF

GHG emissions data extraction and analysis of the power consumption of the lighting installation in the building using a BIM (BIM을 활용한 건축조명의 소비전력에 따른 온실가스 배출량 데이터 추출 및 분석)

  • Lim, Myoung-Su;Su, Kang-jin;Oh, Min-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1446-1449
    • /
    • 2015
  • 본 논문에서는 BIM TOOL 중 하나인 AUTODESK사의 Revit Softwere를 활용하여 건축물에서 필수적으로 사용하고 있는 전기 설비 중 조명설비를 대상으로 전력소비에 따라 발생하는 온실가스인 이산화탄소($CO_2$), 메탄($CH_4$), 아산화질소($N_2O$) 배출량을 추정하여 건축물 에너지절감의 필요성을 강조하고 증명하고자 한다. BIM을 적용 할 수 있는 설계, 시공, 유지보수 외에 사용자의 전력소비에 따른 배출량을 연계한 데이터를 추출하여 온실가스 감축을 위한 전력절감의 TOOL 활용과 국가 정책, 제도 및 지침에 적극 활용되기를 기대한다.

  • PDF

석탄가스화복합발전(IGCC)

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.452
    • /
    • pp.29-34
    • /
    • 2014
  • 2014년 5월 한 달 간 우리나라에서 석탄을 이용해 생산한 발전량은 약 1만5,748GW에 달한다. 이는 국내 총 발전량 중 38%에 해당하는 양이다. 특히 유연탄의 경우 kWh당 정산단가가 61.6원에 불과해 원자력(55.4원) 다음으로 경제성이 높은 발전원에 속한다. 그러나 석탄화력의 경우 황산화물, 질소산화물 및 먼지와 지구온난화의 주범으로 꼽히는 온실가스를 배출하고 있어 항상 논란의 대상이 된다. 2011년 기준으로 국내 $CO_2$ 배출량의 약 1/3 정도가 전력분야에서 발생했는데, 이 중 대부분은 석탄화력에서 배출됐다. 즉 환경을 생각하면 비중을 줄여 나가야 하는 것이 맞지만, 경제성 및 효율성을 고려하면 반드시 필요한 발전원이 석탄화력인 셈이다. 이에 비단 우리나라뿐만 아니라 전 세계 전력 산업계에서는 석탄화력의 효율은 높이면서, 온실가스 배출은 줄일 수 있는 기술개발에 적극 나서고 있다. 그 기술 중 가장 현실적이면서 대표적으로 떠오른 분야가 바로 석탄가스화복합발전(Integrated Gasification Combined Cycle, IGCC)이다. 우리나라에서도 IGCC에 대한 관심을 지속적으로 기울여 왔고, 그 노력의 결실로 현재 태안에 국내 최초의 IGCC 실증플랜트를 건설 중에 있다. 현재 IGCC 기술개발은 어느 단계까지 와 있는지, 또 국내외 시장은 얼마나 성장될 것으로 예상되는지 자세히 정리해봤다.

  • PDF