본 논문에서는 획 상대위치 판별을 통한 온라인 필기체 한글 문자 인식에 관하여 연구하였다. 한글을 구성하는 획을 인식하기 위하여 각 획의 시작부분과 끝부분의 방향코드를 이용하였으며, 인식된 획들을 바탕으로 각 획들간의 상대위치 정보를 이용하여 자소를 인식하였다. 온라인 필기체 한글의 경우 획의 모양과 크기가 필기자에 따라 불규칙하게 변하므로 획의 모양보다는 획의 위치를 인식에 더 중요한 자료로 삼아 인식을 행하였다. 6,000자의 온라인 필기체 한글 문자에 대하여 실험한 결과, 문자당 평균인식속도 0.034초, 획 인식률 92.3%와 문자 인식률 94.6%를 보였다. 본 실험의 결과로서 온라인 필기체 인식시스템을 구성함에 있어서 획의 시작 부분과 끝부분의 진행방향이 획인식의 중요 요소임과 획들간의 상대적 위치가 한글 문자 인식에 있어서 중요한 요소임을 밝혔다.
온라인 필기 인식기의 필기 모델을 응용하여 오프라인 한글 필기의 필기 궤적을 추적하고 인식하는 방법을 제안한다. 사용한 온라인 모델은 HMM의 망으로 구성한 조합형 한글 필기 모델 BongNet이다. 그리고 시계열 신호의 길이에 대한 모델이 전혀 없는 표준 HMM 대신 동적인 연속 출력 nonstationary HMM 을 이용한 방법을 기술하였다. 획 추적 계산 과정에는 프레임 동기 알고리즘을 적용한다 HMM의 각 상태는 가능한 필기 궤적상의 위치에 대한 정보를 기록한다. 매 시각마다 최종 상태의 후보 중에서 모든 획을 완전히 지나는 경로가 있는지를 조사한다. 본 방법은 문자영상에서 온라인 시계열 코드를 만들어 가는 과정이며 코드와 동시에 인식결과를 출력한다.
손으로 쓴 글씨는 인쇄체와 달리 많은 변형이 있다는 점이 한글 필기 인식에서 가장 큰 장애물로 통한다. 본 논문에서는 이점을 해결하면서 필기에 대한 제한을 대폭 줄인 온라인 한글 인식 방법을 제시하고자 한다. 봉넷(BongNet)은 온라인 한글 필기를 인식하기 위한 네트워크 모델이다. 글씨 인식에 들어가는 여러가지 정보를 네트워크라는 틀 안에 표현한 것 인데, 기본적으로 네트워크 구조 자체가 표현하는 정적 글자 구조 정보와, 글꼴에 따라 달라지는 것으로써 노드간 확률적 이동을 나타내는 동적 정보를 포함한다. 본 모델에 따르면 한글 인식은 네트워크 안에서 최적 경로를 따라 초, 중, 종성 자소열을 찾는 문제로 변환된다. 동적 프로그래밍 기법을 이용하여 그 경로를 찾는 인식 알고리즘은 입력 데이타의 양에 정비례하는 효율성을 갖는다.
본 논문은 기계학습 기반 온라인 한글 필기 인식 시스템의 첫 구현 결과를 담고 있다. 한글의 글자는 최소한 하나의 모음을 포함하고 있으며, 이 모음은 대개 직선으로 필기한다는 사전 지식을 활용하여 인식에 적용하고자 한다. 이를 위해 사용자가 온라인으로 필기하면 획 데이터를 획득하여 중성에 해당하는 모음을 찾는 알고리즘을 개발하였다. 제안한 알고리즘에서는, 우선 필기한 글자를 포함하는 사각형 R과 각 획을 둘러싸는 사각형 SR을 생성한 후, 직선을 판별하고, 이 직선들이 모음을 구성하는 후보군을 찾는 과정으로 구성되어 있다. 아직 초기 연구이므로, 다양한 경우에 대한 분석이나 실험 결과는 없지만, 이를 활용하여 온라인 필기 인식 모델에 적용하여 인식 성능을 높이기 위한 추후 연구의 기반으로 활용하고자 한다.
본 논문에서는 한글의 자소간 흘림의 연속 필기를 허용하는 원고 작성기의 구현을 연구하였다. 이러한 온라인 한글 필기의 응용에서는 신속한 인식속도를 갖는 인식방법이 요구되며, 인식중에도 계속적인 필기가 가능하도록 하여 사용자에게 편의를 제공할 수 있어야 한다. 본 논문에서는 이와같은 요구사항을 만족시키기 위하여 스트링 정합방법에 기반한 신속한 인식 방법을 사용한다. 또한, 글자인식과 필기데이타 수집이 병행적으로 처리되도록 구성됨으로써 원고작성시에 자유로운 필기동작이 가능하도록 하였다. 실험결과 50명이 쓴 21,076자에 대하여 88.96%의 인식률을 제공하였으며, 제안하는 구현 방법이 원고작성 응용에 적합하게 동작함을 알 수 있었다.
본 논문은 개발하고자 하는 기계학습 기반 한글 필기 인식 시스템의 첫 연구 결과를 담고 있다. 즉, 기계학습을 위해서는 학습용 및 테스트용 필기 데이터가 아주 많이 필요하므로, 이를 수집하고 전처리하는 방법을 제안하였다. 한글의 한 글자는 자음과 모음을 결합하여 생성되는데, 실제 만 개 이상의 글자가 생성될 수 있다. 따라서 각각의 글자 데이터를 수집하는 대신, 수집한 글자 데이터로부터 초성, 중성, 종성을 구분하여 최종적으로 자음, 모음 데이터로 저장하고자 한다. 아직 초기 연구이므로, 다양한 경우에 대한 분석이나 실험 결과는 없지만, 이를 활용하여 온라인 필기 인식 모델에 적용하여 인식 성능을 높이기 위한 추후 연구의 기반으로 활용하고자 한다.
온라인 방식의 한글 필기체 인식 문제를 분석하고 순환신경망 기반의 해법을 모색한다. 한글 낱글자 인식 문제를 순서데이터 레이블링의 관점에서 서열 분류, 구간 분류, 시간별 분류의 세 단계로 구분하여 각각에 대한 해법을 살펴보며, 한글의 구성 원리를 고려한 해결 방안을 정리한다. 한글 2350글자에 대한 온라인 필기체 데이터에 GRU(gated recurrent unit)의 다층 구조를 가지는 서열 분류모델을 적용한 결과, 낱글자 인식 정확도는 86.2%, 초 중 종성 구성에 따른 6가지 유형 분류 정확도는 98.2%로 측정되었다. 유형 분류 모델로 획의 진행에 따른 유형 변화 역시 높은 정확도로 인식하는 결과를 통해, 순환신경망을 이용하여 순서 데이터에서 한글의 구조와 같은 고차원적 지식을 학습할 수 있음을 확인하였다.
필기체 문자 인식은 온라인 필기체 문자 인식과 오프라인 필기체 문자 인식으로 나누어진다. 온라인 필기체 문자 인식은 타블렛과 같은 펜 기반의 전자식 입력 장치를 이용하여 필기의 순서와 획의 위치와 같은 동적인 필기 정보를 문자의 입력 시 획득할 수 있어 오프라인 필기체 문자 인식에 비해 큰 연구 성과를 이루었다. 그러나 오프라인 필기체 문자 인식은 온라인 필기체 문자 인식에서와 같이 동적인 정보를 입력받을 수 없고, 다양한 필기와 자소의 겹침이 심하며 획 사이의 잡영을 많이 가지고 있어 인식의 전처리 결과에 따라 인식 성능이 크게 달라진다. 본 논문에서는 오프라인 필기체 한글 문자 인식을 위해 문자의 동적인 정보를 포함하는 획을 효과적으로 추출하는 방법을 제안한다. 제안된 방법은 전처리 과정으로 먼저 Watershed 알고리즘을 이용하여 입력된 필기체 문자 영상의 향상 및 이진화를 수행한다. 이진화된 문자부를 변형된 Lu와 Wang의 세선화 알고리즘을 사용하여 세선화를 수행한 후 문자에서의 특징점을 추출하여 세그먼트 화소열을 추출하고, 최대 허용 오차법을 이용하여 벡터화한다. 벡터화의 수행으로 몇 개의 획이 하나의 세그먼트로 묶인 경우, 하나의 세그먼트 화소열은 2 또는 그 이상의 세그먼트 벡터로 분리된다. 추출된 세그먼트 벡터들을 완전한 획으로 재구성하기 위해서 오른손 필기 좌표계 시스템을 이용하여 벡터의 방향적인 성분을 인간의 필기 획의 방향에 알맞게 수정하고, 수정된 세그먼트 벡터의 방향성과 분기 정보를 이용하여 인접한 결합 가능한 세그먼트 벡터를 결합함으로써 문자 인식에 적합한 완전한 획으로 재구성한다. 실험 결과 제안된 방법이 필기체 한글 문자 인식에 적합함을 알 수 있었다.
본 논문에서는 제한된 필기 글꼴을 이용한 휴대형 정보기기용 온라인 문자 인식 알고리즘을 제안하였다. 한글과 영숫자를 동시에 사용하는 문자 인식은 애매성으로 인하여 인식율이 낮아지며, 이를 극복하기 위하여 모드 변환이나 영역 분리 등의 제약을 하게 된다. 본 논문에서 제안한 인식 알고리즘은 한글과 영문자, 숫자를 혼용하여 사용할 수밖에 없는 우리의 문자 환경에서 사용자의 평의성을 최대한 살려 입력 모드 전환이나 필기 영역 분리 등의 제약을 하지 않는 단일 알고리즘이다. 또한 역추적에 의하여 인식 과정에서 발생할 수 있는 미의식 또는 오인식을 보정할 수 있도록 한다. 제안한 알고리즘은 전체 알고리즘의 크기가 작으며 계산량이 적어서 메모리와 속도 등의 성능에 있어서 자원의 제약을 가질 수밖에 없는 초소형 휴대형 정보기기의 입력 장치로서 적합하도록 연구하였다. 실험 결과 영숫자 98%, 한글 97%의 인식율을 얻어 유용성을 확인하였다.
한글 필기는 항상 초성, 중성, 종성의 순으로 씌어진다. 본 논문은 이점을 이용하여 자소 탐색 모델을 설계하고 그 탐색 결과에 의거하여 글자를 인식하려는 온라인 필기 인식 방법을 제시하고자 한다. 기본 자소 모델은 은닉 마르코프 모델을 이용하고 자소 탐색 모델은 HMM의 망으로 구성한다. 자소 탐색은 Viterbi 알고리즘에 의한 정합으로 이루어지며 글자 인식은 이들 자소 가설 격자의 탐색으로 이루어진다. 인식 실험 결과는 간단한 인식기 구조에도 불구하고 정자체의 경우 87.47%에 달하는 상당한 인식률을 보였으며, 특히 자연스럽게 쓴 필기에서도 매우 훌륭한 자소 분할 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.