• Title/Summary/Keyword: 온도 보상

Search Result 417, Processing Time 0.03 seconds

Temperature Compensation Algorithm of Nondispersive Infrared (NDIR) Gas Sensor (비분산 적외선 가스센서의 온도보상 알고리즘)

  • Park, Jong-Seon;Yi, Seung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.51-55
    • /
    • 2011
  • This paper describes the temperature compensation algorithm using thermopile detector for nondispersive infrared methane gas sensor. From the output voltage of thermistor that is attached onto the infrared detector, the ambient temperature was extracted. The effects of temperatures on the properties of sensor module (the characteristics of narrow bandpass filter, optical cavity and infrared lamp, and gas absorption coefficient times optical path length) have been introduced in order to implement the temperature compensation algorithm. Even though the measurement error of developed sensor module was in the range of $\pm$ 1,500 ppm, after programming the temperature compensation algorithm, the developed sensor module shows a high accuracy less than +180 ppm error within $20^{\circ}C$ temperature variation.

Temperature Compensation of Fiber Bragg Grating Using Bi-metal (Bi-metal을 이용한 광섬유 단주기 격자의 온도 보상)

  • 송종섭;한원택;백운출;정영주
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.332-333
    • /
    • 2003
  • Optical Add/Drop Multiplexer (OADM)은 WDM, 즉 파장분할을 이용하여 보다 많은 정보를 보다 빠르게 전송할 수 있는 광통신 시스템에서 가장 중요한 소자 중의 하나이다. WDM (특히, DWDM) 시스템에서는 광신호의 전송 대역이 파장 영역에서 0.8 nm 정도의 매우 좁은 간격으로 배치되기 때문에, 파장 가감을 위한 광필터들은 높은 파장 정확성과 환경적 조건에 대한 안정성을 가져야만 한다. 그러나 광섬유 단주기 격자의 온도 의존성은 일반적으로 0.01 nm/$^{\circ}C$ 정도로 너무 크기 때문에 WDM 시스템에서 응용되기 위해서는 패키징을 통한 온도 보상이 필요하다. (중략)

  • PDF

A Temperature-Compensated Hygrometer Using Resistive Humidity Sensors (전기 저항식 습도 센서를 이용한 온도 보상된 습도계 설계)

  • Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.27-32
    • /
    • 2006
  • A temperature-compensated hygrometer has been developed using resistive humidity sensors. It consist of a sine wave generator, logarithm converters, rectifiers, and amplifiers. The hygrometer accomplishes the linearization and temperature compensation of sensor characteristics. The theory of operation is presented and experimental results are used to verify theoretical predictions. The experimental results show that the conversion sensitivity of the hygrometer is about 24.8 mV/%RH and the linearity error of the conversion characteristic is less than 17.2 % over a relative humidity range from 30 to 80 %RH. The results also show that the temperature coefficient of the output voltage is less than $10149ppm/^{\circ}C$ over a temperature range from 22 to $40^{\circ}C$.

Temperature compensated operation for small trichromatic LED backlight (소형 3파장 LED 백라이트의 온도 보상 구동)

  • Lee, Dong-Woo;Park, Mu-Youn;Hwang, Soo-Ryong;Kim, Jin-Ha
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.33-39
    • /
    • 2006
  • Trichromatic LED backlight renders higher colour gamut and panel transmittance to the LCDs than the phosphor-converted white LED backlight. In realization, however, several technical challenges arise, such as colour shift, due to the ambient temperature change, brightness decrease along with the temperature increase, colour mixing, minimizing the total number of chips and so on. In this paper we designed and tested the low cost temperature compensating circuit, using a thermistor as a temperature compensating element, for stabilizing the brightness and maintaining the colour coordinates of the trichromatic backlight units. By applying the temperature compensating circuit, the decrement rate of the brightness and colour shift rate were achieved by 54% and 51% respectively comparing with uncompensated case.

Passive Temperature Compensation for All Optical Fiber Type DWDM Interleaver (고밀도 파장분할용 전광섬유형 인터리버의 수동 온도보상)

  • Chang Jin Hyeon;Kim Yung Kwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.35-42
    • /
    • 2004
  • In this paper, we report Mach Zehnder Interleaver of optical fiber type is fabricated by the fabrication system only for interfermeter design, and it is used $CO_2$ laser to adjust precisely the wavelength. The optical fiber is very sensitive in the thermal variation around. Thus, When fabrication the prototype, it is applied a technique to compensate the optical thermal effect because the center wavelength at the output is shifted according to the thermal variation around. it can he done by applying a substrate with high thermal expansion coefficient as well as an adjusting the position between two optical fiber couplers. Consequently, the output wavelength is shifted within 0.05 nm when the surrounding temperature varies until $60^{\circ}C$.

Temperature compensation algorithm implemented in a portable radiation detection device based on the Android platform (안드로이드 플랫폼 기반의 휴대용 방사선 검출장치에서의 온도보상 알고리즘 구현)

  • Lee, Jon-hwey;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.141-143
    • /
    • 2013
  • Portable radiation detection devices currently available, there are a lot of functional constraints. In order to solve these drawbacks, research has been done on a portable radiation detection device based on the Android platform. Since the early stages of research, it is possible to measure the radiation, but The accuracy is worse than the product being sold. Portable radiation detection device based on the Android platform, the error occurs when the temperature changes. Temperature compensation algorithm was implemented to improve accuracy by eliminating errors due to temperature changes.

  • PDF

Temperature Compensation Using Principal Component Analysis for Impedance-based Structural Health Monitoring (주성분 분석을 이용한 임피던스 기반 구조물 건전성 모니터링의 온도보상기법)

  • Shim, Hyo-Jin;Min, Ji-Young;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.32-35
    • /
    • 2011
  • 전기역학적 임피던스(electromechanical impedance)를 이용한 구조물 건전성 모니터링(structural health monitoring; SHM) 기술은 구조물의 주요 부재에 압전센서를 부착하여 이로부터 획득한 임피던스 신호의 변화를 관찰함으로써 구조물의 국부적 상태를 실시간으로 진단하는 것이다. 임피던스는 손상뿐만 아니라 외부 온도에도 민감하게 반응하기 때문에 구조물 진단 결과에 상당한 오차를 유발할 수 있으므로 이에 대한 보상을 수행해야 한다. 따라서 본 논문에서는 온도변화가 임피던스 기반 진단 결과에 미치는 영향을 PZT 센서를 사용하여 실험적으로 연구하였다. 리액턴스(reactance)의 주성분 분석(Principal Component Analysis; PCA)을 통해 도출된 첫번째 주성분과 저항(resistance)으로부터 계산된 손상지수 사이의 관계를 분석함으로써, 온도변화에 의해 구별되지 않았던 손상을 보다 확연하게 구별 할 수 있음을 확인하였다.

  • PDF

A Study on the ASIC of Temperature Compensation Circuit for AFCI (AFCI용 온도보상회로의 ASIC화에 관한 연구)

  • Yang, Seung-Kook;Shin, Myoung-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.293-296
    • /
    • 2009
  • In order to protect the electrical fire, AFCI(Arc Fault Cirruit Interrupter) was obligated to adopted in United States of America since 2002. AFCI using by line resistor of neutral trace needs to compensate the resistance variation of the line resistor by temperature variation. In this paper, the ASIC including the temperature compensation circuit is implemented. The successful implementation is verified by showing the effectiveness of an electric and a temperature characteristics for ARC signals by simulation results.

  • PDF

Hot Wire Wind Speed Sensor System Without Ambient Temperature Compensation (주변 온도보상이 필요 없는 열선식 풍속 센서 시스템)

  • Sung, Junkyu;Lee, Keunwoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1188-1194
    • /
    • 2019
  • Among the many ways to measure the flow of fluid the hot air wind speed sensor is a device for measuring the speed or temperature by heat transfer of a fluid. However, the hot wire wind speed sensor is sensitive to external environmental factors, and has a disadvantage of inaccuracy due to ambient temperature, humidity, and signal noise. In order to compensate for this disadvantage, advanced technology has been introduced by adding temperature compensation circuits, but it is expensive. In order to solve this problem, this paper studies the wind speed sensor that does not need temperature compensation. Heated wind speed sensors are very vulnerable to the ambient temperature, which is generated by electronic circuits, even among external environmental factors. in order to improve this, the auxiliary heating element is additionally installed in the heating element to control a constant temperature difference between the auxiliary heating element and the heating element.

A Study on the Temperature Compensated and Linearized Power Detector (온도보상 및 선형화 된 전력검출기에 관한 연구)

  • 김희태;오재석;박의준;이영순;김병철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1386-1391
    • /
    • 2000
  • In this paper, the method to linearize the non-linearity of diode and to compensate the characteristics change of diode with the temperature is studied. Square root circuit is used to linearize the non-linearity of diode about the input power, and two identical diodes and OP-Amps, which have variable reference, are used to compensate the characteristic change of diode with the temperature. As the result, designed diode power detector (with the square root circuit and temperature compensation circuit) can detect the output power linearly with the 0.23 $\pm$0.025V/dBm rate in the case the input power is greater than -6 dBm, and the designed circuit operates stably with no variation in the output data about the temperature change from the room temperature to 8$0^{\circ}C$.

  • PDF