• Title/Summary/Keyword: 온도 보상

Search Result 417, Processing Time 0.023 seconds

Optical Design of a Reflecting Omnidirectional Vision System for Long-wavelength Infrared Light (원적외선용 반사식 전방위 비전 시스템의 광학 설계)

  • Ju, Yun Jae;Jo, Jae Heung;Ryu, Jae Myung
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.2
    • /
    • pp.37-47
    • /
    • 2019
  • A reflecting omnidirectional optical system with four spherical and aspherical mirrors, for use with long-wavelength infrared light (LWIR) for night surveillance, is proposed. It is designed to include a collecting pseudo-Cassegrain reflector and an imaging inverse pseudo-Cassegrain reflector, and the design process and performance analysis is reported in detail. The half-field of view (HFOV) and F-number of this optical system are $40-110^{\circ}$ and 1.56, respectively. To use the LWIR imaging, the size of the image must be similar to that of the microbolometer sensor for LWIR. As a result, the size of the image must be $5.9mm{\times}5.9mm$ if possible. The image size ratio for an HFOV range of $40^{\circ}$ to $110^{\circ}$ after optimizing the design is 48.86%. At a spatial frequency of 20 lp/mm when the HFOV is $110^{\circ}$, the modulation transfer function (MTF) for LWIR is 0.381. Additionally, the cumulative probability of tolerance for the LWIR at a spatial frequency of 20 lp/mm is 99.75%. As a result of athermalization analysis in the temperature range of $-32^{\circ}C$ to $+55^{\circ}C$, we find that the secondary mirror of the inverse pseudo-Cassegrain reflector can function as a compensator, to alleviate MTF degradation with rising temperature.

Catadioptric NA 0.6 Objective Design in 193 nm with 266 nm Autofocus (이중 파장 심자외선 카타디옵트릭 NA 0.6 대물렌즈 광학 설계)

  • Do Hee Kim;Seok Young Ju;Jun Ho Lee;Hagyong Kihm;Ho-Soon Yang
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • We designed a catadioptric objective lens with a 0.6 numerical aperture (NA) for semiconductor inspection at 193 nm. The objective lens meets major requirements such as a spatial resolution of 200 nm and a field of view (FOV) of 0.15 mm or more. We selected a wavelength of 266 nm for autofocus based on the availability of the light source. First, we built the objective lenses of three lens groups: a focusing lens group, a field-lens group, and an NA conversion group. In particular, the NA conversion group is a group of catadioptric lenses that convert the numerical aperture of the beam focused by the prior groups to the required value, i.e., 0.6. The last design comprises 11 optical elements with root-mean-squared (RMS) wavefront aberrations less than λ/80 over the entire field of view. We also achieved the athermalization of the objective lens with focus-shift alone satisfying the performance of RMS wavefront aberration below λ/30 at a temperature range of 20 ± 1.2 ℃.

Thermal Memory Effect Modeling and Compensation in Doherty Amplifier for Pre-distorter (전치왜곡기 적용을 위한 Doherty 증폭기의 열 메모리 효과 모델링과 보상)

  • Lee, Suk-Hui;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.65-71
    • /
    • 2007
  • Doherty amplifier has more efficiency and distortion than general amplifier. These distortion classified amplitude distortion and phase distortion, memory effect distortion. This paper reports on an attempt to investigate, model and quantity the contribution of the electrical nonlinearity effects and the thermal memory effects to a doherty amplifier's distortion generation and suggests thermal memory effect compensator for pre-distorter. Also this paper reports on the development of an accurate dynamic expression of the instantaneous junction temperature as a function of the instantaneous dissipated power. The parameters of suggested model suppress thermal memory effects doherty amplifier with pre-distorter. Pre-distorter with electrothermal memory effect compensator for doherty amplifier enhanced ACLR performance about 22 dB than general doherty amplifier. Experiment results were mesured by 50W LDMOS Doherty amplifier and pre-distorter with electrothermal memory effect compensator was simulated by ADS.

Design of Prediction Unit for H.264 decoder (H.264 복호기를 위한 효율적인 예측 연산기 설계)

  • Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.47-52
    • /
    • 2009
  • H.264 video coding standard is widely used due to the high compression rate and quality. The motion compensation is the most time-consuming and complex unit in the H.264 decoder. The performance of the motion compensation is determined by the calculation of pixel interpolation and management of the reference pixels. The reference pixels read from external memory using efficient memory management for data reuse is necessary along with the high performance interpolators. We propose the architecture of a motion compensation unit for H.264 decoders. It is composed of 2-dimensional circular register files, a motion vector predictor and high performance interpolators with low complexity. The 2-dimensional circular register files reuse reference pixel data as much as possible, and feed reference pixel data to interpolators without any latency and complex logic circuits. We design a motion compensation unit and a intra-prediction unit and integrate them into a prediction unit and verify the operation and the performance.

공기조화용 자기냉동기의 연구 동향

  • 이종석
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.29 no.4
    • /
    • pp.48-54
    • /
    • 2000
  • 자성재료에 자기장을 걸어주변 가열되고 자기장을 제거하면 냉각되는 성질이 있는데, 이를 자기열량효과(magnetocaloric effect)라고 하며, 이것을 이용해서 저온을 생성시키는 방법을 자기냉동(magnetic refrigeration)이라고 한다. 큐리 온도(Curie temperature) 부근의 강자성체에 자 기장이 가해지면 전자례도내에서 쌍을 이루지 않은 전자들의 자기모벤트들이 자기장에 평행 하게 배열되는데, 이로 인해 열역학적 무질서의 척도인 엔트로피는 낮아지고 이러한 손실을 보상하기 위해 재료의 온도가 올라가게 된다.반대로 자기장이 제거되면 자기모벤트가 본래의 무질서한 상태로 돌아오며, 엔트로피가 증가하 고 재료의 온도는 떨어지게 되는 것이다. 역사적으로 보면 1881년에 Warburg가 큐리온도 부근의 철에서 자기열량효과를 처음 발견하였으며. 1926년과 1927년에 Debye와 Giauque가 각각 단열소자볍 (adiabatic demagnetization)을 제안함으로써 실용화되기 시작하여 주로 극저온을 얻는 방법으로 이용되어 왔다. 1950년도 이전의 연구는 절대온도 영도(OK)에 도달하고 자 하는 순수과학적인 노력으로서 개방사이클(open cycle)을 이용한 단열냉각 방식을 추구하 였으나, 1950년 이후부터는 공학적인 응용을 목적으로 밀폐사이클(closed cycle)을 형성하는 자기냉동기에 관한 연구가 진행되었다. 1976년에 Brown은 희토류(rare earth) 금속인 가돌리늄(Gd)을 사용하여 유체(물 80%와 에틸 알코올 20%)를 재생시킴으로써 상온에서 작동 하는 자기냉동기를 보고한 바 있다. 그는 7 T의 큰 자장을 이용하였으며, 고온부와 저온부의 온도는 각각 $46^{\circ}C와\;-1^{\circ}C로서\;47^{\circ}C$의 온도간격을 얻었다. 자기냉동에 있어서의 또 하나의 중요한 진전은 1978년과 1982년에 Steyert와 Barclay에 의해서 능동자기재생기(active magnetic r regenerator)의 개념이 소개되고 개발된 것으로, 이는 자성재료가 냉매로서 뿐만 아니라 열전달 유체의 재생기로도 사용되는 방식이다. 이상과 같은 자기냉동기술의 발달에 이어서 1997년에 미국의 Astronautics사(Wisconsin주 Madison시 소재)와 Ames 연구소(Iowa주 Ames 시 소재)의 공동연구팀이 발표한 두 가지의 새로운 진전으로 인해 공기조화 및 냉동분야에 적용할 수 있는 자기냉동기의 실용화 가능성이 한층 높아졌다. 이들의 연구결과는 (1) 자기냉동이 실온에서도 실현 가능한 기술이며 증기압 축식 냉동에 필적할 만하다는 것을 보인 것과 (2) 이미 알려져 있던 자기냉동재료보다 자기 열량효과가 훨씬 큰 새로운 재료를 발견한 것이다. 이로써 자기냉동에 대한 관심과 기대가 한결 커지고 있다. 본 원고에서는 자기냉동의 원리가 되는 자기열량효과와 이를 이용한 자기냉동의 방법 그리고 최근에 이루어진 새로운 진전에 대해 소개하고 공기조화 및 냉동분야에의 적용 가능성을 전망해 보고자 한다.

  • PDF

A Color Temperature and Illuminance Controllable LED Lighting System (색온도와 조도 제어가능한 LED 조명 시스템)

  • Kim, Hoon;Youm, Jea-Kyoung;Chung, Won-Sup;Kim, Hee-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.10-22
    • /
    • 2009
  • This paper presents an LED lighting system with an LED color control algorithm that can independently change its color temperature and illuminance. To show the validity of the proposed algorithm, it is proven that its solution always exists. The proposed algorithm was applied to the control of an LED module that is composed of red, green, blue, and white (RGBW) LEDs. Its color temperature variation ranged from 3,500~7,500[$^{\circ}K$], and its illuminance ranges from 500~1,500[lux]. Within these range, the color temperature and illuminance deviations are as low as $\pm0.8$[%] when the junction temperature of LEDs are maintained at 40[$^{\circ}C$]. In the range of 30~70[$^{\circ}C$], the measured illuminance and color temperature deviations are as low as 2.1[%] and 3.6[%], and the compensated ones are as low as 1[%] and 0.49[%], when the desired illuminance and color temperature are 1,000[lux] and 6,500[$^{\circ}K$], respectively.nyang.ac.kr).

Distributed Fiber-Optic Temperature Sensor Network for Protection of Electric Power Systems (전력설비 보호를 위한 분배형 광섬유 온도센서)

  • Park, Hyoung-Jun;Lee, June-Ho;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.64-71
    • /
    • 2006
  • We developed a fiber-optic temperature sensor system, with 10 fiber Bragg gratings, for abnormal high-temperature monitoring in power systems. We used Gaussian line-fitting algorithm to compensate the spectrum distortion in the wavelength-scanned Farby-Perot filter demodulation scheme. Compared with highest-peak-detection method, the proposed algorithm substantially reduced measurement errors. The overall measurement error was less than 1[%] compared with the reference thermocouple and the linearity error was 0.37[%].

Reliable Conversion and Compensation for Temperature of STT (지능형 온도 전송기의 시스템 안정성과 온도 보상)

  • Lee, Dong-Kyu;Park, Jae-Hyun;Kim, Young-Su;Cho, Young-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.403-406
    • /
    • 1998
  • There are two cases of error occurrence of STT(Smart Temperature Transmitter). One is that because of unstable reference voltage, data from A/D converter is not reliable. The other is that because of change of room temperature, this change affects conversion of A/D converter. In this paper, we show algorithms be adapted to STT for reliable conversion of A/D converter through a experiment and compensation for temperature change. In a experiment, we collect data from reference voltage and ground then calculate nominal value of these at constant temperature during A/D converter initialization or at any conversion time. Algorithm for compensation for unstable reference voltage calculates a correction factor and adapts it to compensation for malfunction of A/D converter. Algorithm for compensation for variation of room temperature is come from linearization of thermistor but is adapted to zener diode, not thermistor, therefor we have less effort for compensation for temperature and have a idea that it can be adapted to A/D converter system.

  • PDF

Detection of White Light Interference Peak Position utilizing Analog Signal Processing (아날로그 신호처리를 이용한 백색광 간섭 피크의 검출)

  • Yeh, Yun-Hae;Lee, Jong-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • A signal processing method for white light interferometry (WLI), which performs a series of analog signal processing steps to locate the central interference fringe position at high speed: is developed and applied to a WLI temperature sensor system. We found that the new method has random walk of $0.019^{\circ}C/\sqrt{Hz}$ with good linearity. However, the temperature change in the path-matching interferometer results in drift of the measured sensor output. The temperature dependence of drift in the WLI temperature sensor system, was calculated to be $1.42{\mu}m/^{\circ}C$. It is also found that the relationship between the peak spacing in the interferogram and the spacing measured by the method can be nonlinear when the fringe spacing is comparable to the coherence length of the source.

Anti-Collision System of Crane Using Neural Network and Ultrasonic (신경망과 초음파를 이용한 크레인의 충돌방지 시스템)

  • Lee, Byeong-Ro;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1564-1568
    • /
    • 2008
  • The anti-collision system is one of units for effectual operation and safety in crane operation. Most of the system have used ultrasonic to measure position and to prevent collision of crane. But, the anti-collision system using ultrasonic is fallen the reliability of performance by the change of temperature and humidity. Hence, this study proposes neural network applied to anti-collision system to improve accuracy and stability of the measured distance data, and we evaluate performance of the system. In results of experiments, the proposed method was seen that stability and accuracy of data are improved than that of the temperature compensation method.