• Title/Summary/Keyword: 온도분포해석

Search Result 965, Processing Time 0.033 seconds

Residual Stress Distribution on the Fillet Weldment used by Finite Element Method (유한요소법을 이용한 필렛용접 이음부의 잔류응력분포)

  • Kim, Hyun Sung;Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.197-207
    • /
    • 2000
  • A transient heat transfer analysis and thermo-elastic analysis have been performed for the residual stress distribution on the fillet weldment used by finite element method. Specimen is fabricated single-pass fillet welding. This computation was performed for conditions including surface heat flux and temperature dependent thermo-physical properties using by heat input as parameter. Also, cut-off temperature of residual stress estimation by thermo-elastic analysis is determined. The fillet weldment were measured to determined their residual stress distributions for using hole-drilling method. As result, it was found that large tensile residual stress is about material yield strength, and the numerical simulation results for finite element method similar to residual stresses by hole-drilling method and other exiting research. Also, cut-off temperature is effectively determined by temperature which calculated maximum thermal stress equal to material yield strength.

  • PDF

Group Ignition of Liquid Fuel Droplets Cloud (액체연료 액적군의 집단 점화)

  • 박용열;김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2376-2384
    • /
    • 1992
  • A theoretical analysis is carried out to predict the characteristics of transient ignition phenomena for the spherical fuel droplets cloud with non-uniform droplet size and number density distribution. Numerical calculations are performed for various cases depending on the combinations of the major parameters such as ambient temperature and initial distributions of droplet size and number density. The results of present study show that the ignition delay decreases for higher ambient temperature and smaller droplet size. Droplets cloud of hollow type with outer concentrated distribution ignites most rapidly.

Axisymmetric Thermal Analysis of 3D Regenerative Cooling System (3차원 재생 냉각 시스템의 축대칭 열해석)

  • Kim Sung-In;Park Seung-O
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • Axisymmetric numerical thermal analysis for a 3-dimensional regenerative cooling system in a rocket engine is carried out. To predict the accurate heat transfer with the stiff temperature distribution, several tests have been conducted for the grid size, the properties variation of the coolant and the combustion gas depending on temperature. The axisymmetric heat flux model is defined using fin efficiencies and is designed to be equivalent to the heat flux of the 3-dimensional coolant channel. For comparison purpose, the 1-dimensional analysis using Bartz equation is also conducted. The performance of the present model in predicting the cooling characteristics of a 3-dimensional regenerative cooling system is compared with the 3-dimensional results of RTE(Rocket Thermal Evaluation). It is found that the present method predicts much closer results to those of RTE code than 1-dimensional analysis.

Analysis of Laminar Boundary Layer with Various Mach Number (마하수에 따른 층류유동 변화 분석)

  • Park, Myeong-U;Tae, Myeong-Sik;Park, Sang-Ho;Son, So-Eun;Son, Chan-Gyu;O, Se-Jong
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.113-116
    • /
    • 2012
  • 본 연구에서는 마하수 변화에 따른 층류유동 변화를 살펴보았다. 해석 프로그램은 EDISON_CFD를 이용하고, EDISON_CFD에서 사용한 수치기법과 Scheme에 대해서 언급한다. CFD기법을 이용하여 해석한 결과를 경계층조건의 이론 해석방법인 Blasius Boundary Layer와 비교하였다. 각 요소마다 해석한 결과를 통하여 층류 경계층의 특성을 살펴보았다. 그 결과 마하수 증가에 따른 평판의 온도 증가와 밀도 감소가 경계층을 선형적으로 증가시키는 것을 보았다. 또한 마하수 증가에 따른 점성계수의 증가를 살펴봄으로서 층류유동에서 마하수의 증가는 점성에 의한 운동량 확산을 증가시킨다는 것을 보았다.

  • PDF

Analysis of the Effect of Solar Radiation on Internal Temperature Distribution in Concrete Mat Foundation (태양 복사열이 콘크리트 매트기초의 내부 온도분포에 미치는 영향에 관한 해석적 연구)

  • Song, Chung Hyun;Lee, Chang Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • This research investigated the effect of solar radiation on the temperature distribution in concrete mat foundation. Zhang and Huang Model was utilized to estimate solar radiation heat at a given date and time. A one-dimensional finite element formula was derived with the fundamental laws of heat transfer and Galerkin method. Based on the formula, a one dimensional finite element analysis code was developed using MATLAB. Hydration heat analysis of mat foundation were conducted using the developed code. It was found that the solar radiation reduced the maximum temperature difference in mat foundation, and this temperature difference reduction was more prominent in case of summer season cast, a higher initial concrete temperature, and a thicker mat foundation depth. The research recommended that the solar radiation should be considered in hydration heat analysis of concrete mat foundation so as not to overestimate the maximum temperature difference in mat foundation.

I-DEAS용 Program file을 이용한 CRT용 Glass & Mold의 Modeling 및 Mesh data구현

  • Im, Yong-Chan
    • Information Display
    • /
    • v.4 no.4
    • /
    • pp.14-19
    • /
    • 2003
  • CRT용 Glass 산업의 경우, 금형 및 유리의 온도는 매우 중요한 변수이다. 이 온도는 상온에서 출발한 금형이 반복되는 Heat Cycle을 거치면서 안정화 상태로 이르게 되는 과정을 거치면서 결정된다. 이때 안정화되는 금형의 온도분포에 의해 제품의 품질이 결정됨에 따라, 불량이 발생할 경우, 안정화 시간 및 금형수정 Cost 증가 등 매우 큰 손실이 야기된다. 이에 본 연구는 CAE를 통하여 상기 Heat Cycle의 해석과정 중에서, I-DEAS의 MACRO인 "Program file"을 이용하여 Modeling 및 Meshing을 수행하여 단시간 내 정확한 Preprocessing을 통해 유동 및 열 해석에 적용하는 자동화 프로그램을 개발하였다.

A Study on the Temperature Analysis of Casting Mould by Boundary Element Method (경계요소법을 이용한 주철제 주형의 온도해석에 관한 연구)

  • 민수홍;조의일;김옥삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.485-496
    • /
    • 1992
  • 본 연구에서는 제철, 제강공정에서 많이 사용하고 있는 C22FR1.4형의 주형을 상사적으로 축소시킨 주철제(GC25) 주형에 순알루미늄(순도99%)의 주물을 용입하여 응고 및 냉각 과정의 주물 및 주철제 주형에 미치는 열의 영향에 관하여 2차원 비정상 열전도 문제를 경계요소법으로 해석하고 실험을 통하여 검증하였다.

Laminar Convective Heat Transfer in Vertical Square Duct with Variational Symmetric Heat Flux (비균일 대칭성 열Flux인 수직 사각 닥트내의 층류조합대류 열전달 효과)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.1
    • /
    • pp.47-53
    • /
    • 1982
  • An analysis of convection, in a fully developed laminar steady flow through the vertical square duct under the condition of variational symmetric heat flux, is considered. Finite element solution algorithm by Galerkin's method with triangular elements and linear interpolation polynominals for the temperature and velocity profiles are derived for the vertical square duct. The comparison of temperature distribution due to variational symmetric heat flux in the duct were made with available the other data when the condition of peripheral heat flux were uniform and zero. Numerical values for the dimensionless temperatures and Nusselt numbers at selected Rayleigh numbers and pressure gradient parameters were obtained at a few nodal points for the vertical square ducts and effects of corner in the duct were investigated.

  • PDF

Characterization of Thermal Properties of Concrte and Temperature Prediction Model (콘크리트재료의 열특성 및 수화열 해석)

  • 양성철
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.121-132
    • /
    • 1997
  • The thermal behavior of' concrete can be ch;lracterized from a knowledge of concrete ternperatu1.e at early ages, environmental conditions, and cement hydration in the mixture. 'l'o account for thost. interactions, a computer model was developed for prwlicting the temperature pr.ol'ile in hnrdcning c o n c r c t ~ st.r~icture in terms of material and tmvironmcntal factors. The cerncnt hydration cha~.acteristics such as the activating energy, total heat 1ihei.atr.d. anti th\ulcorner degree of' hydration. can represent the internal heat gc,neration. In this study. th(> activating c1ncrgy and the tlcgree of' hydration curve were determined well fmm the rnortn~. compressive strength tests while total amount of heat liberated was determined by tht> isothermal calorimctcr method. The main purpose of' this study is to correlate measured tt>mperaturr distributions in a concrete st1,ucture during thc hardening process with the ~ c s u l t s computed f'ro~n theoretical considrl.ations. Using twodimensional heat transfer model, first. the importance of several parameters will be identified by a parametric analysis. Then, the tcmpcmture distribution of thc cylindrical concrete specimen in the laboratory was mensuwti and compared with that yielded by thc theoretical considel.ations.

Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature (지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석)

  • Lee, Okjeong;Sim, Ingyeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.