• Title/Summary/Keyword: 온도모델

Search Result 2,764, Processing Time 0.036 seconds

Species Identification of Noctuid Potential Pests of Soybean and Maize, and Estimation of Their Annual Adult Emergence in Suwon, Korea (수원지방에서 콩과 옥수수 가해 밤나방과의 잠재해충에 대한 종 동정과 연중 성충 발생 추정)

  • Jung, Jin Kyo;Kim, Eun Young;Kim, I Hyeon;Seo, Bo Yoon
    • Korean journal of applied entomology
    • /
    • v.59 no.2
    • /
    • pp.93-107
    • /
    • 2020
  • Adults of seven noctuid potential pests (Spodoptera frugiperda, S. litura, S. exigua, Ctenoplusia agnata, Mythimna loreyi, Athetis dissimilis, and A. lepigone) of soybean and maize in Suwon, Korea were identified by their morphological characteristics in the wing pattern and male genitalia and partial mitochondrial DNA sequences of cytochrome c oxidase subunit 1 gene. The generation number of adults that emerge annually in six species (except A. lepigone) was estimated from the data on density fluctuations of adults caught in sex pheromone traps in 2019 and the forecasted data using temperature-associated development and reproduction models for those species. S. frugiperda adults were caught from July 27th to October 31st in 2019, and hence were initially estimated to emerge three times per year. But, it was finally expected that S. frugiperda adults could possibly emerge a total of four times per year in Suwon, considering larval emergence observed during mid- and late June in other areas. Adult emergence of S. litura, S. exigua, C. agnata, and M. loreyi in 2019 was observed from May 29th to November 6th, from May 14th to November 6th, from May 26th to October 25th, and from May 31st to November 23rd, respectively. Annual adult emergence of these four species was estimated as at least four times. Adults of A. dissimilis were caught from May 26th to September 11th in 2019, and adult emergence was estimated at only twice per annum. It was postulated that the first adult populations of five species except the two Athetis species were probably migrated from other areas.

Study on Electronic Structures and Properties in High $T_c\;YBa_2Cu_O_{7-x}\;and\;YBa_2Cu_4O_8$ Superconductors (고온 초전도체 YBa$_2 Cu_3O_{7-x}$와 YBa$_2Cu_4O_8$의 전자구조와 성질에 관한 연구)

  • Son Man-Shick;Ha Hyun-Shick;Paek U-Hyon;Lee Kee-Hag
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.316-323
    • /
    • 1991
  • We calculated a difference between the YBa$_2Cu _3O_{7-x}$ superconductor (123 system) of critical temperature, 95 K and the YBa$_2Cu_4 O_8$ superconductors (124 system) of critical temperature, 80 K in Y-system superconductors using Extended Huckel Theory (EHT). The valence electron population (VEP), reduced overlap population (ROP) and net charge for the charged cluster models relating to the layer and the chain in 123 and 124 systems were compared. The VEPs of Cu atom in the layer of 123 and 124 systems populated d$_{z^2}$ orbital more than d$_{x^2-y^2}$ orbital, and in the chain of 123 and 124 systems populated d$_{y^2-z^2}$ orbital more than d$_{z^2}$ orbital. The ROP of the Cu(1)-O(1) in the layer of 123 system was larger than the value of the Cu(1)-O(2), but the ROP of the Cu(1)-O(2) in the layer of 124 system was larger than the value of the Cu(1)-O(1). The ROP of Cu(2)-O(4) in the chain of 123 and 124 systems were larger than the value of the Cu(2)-O(3). In 123 system the net charge values of the Cu in the layer was larger than the value of the Cu in the chain. However, in 124 system the net charge value of the Cu in the chain was larger than the value in the layer.

  • PDF

Timing of Diapause Induction and Number of Generations of Helicoverpa armigera (Hüber) (Lepidoptera: Noctuidae) in Suwon, Korea (수원지방에서 왕담배나방 (밤나방과) 휴면 유기시기와 연간 발생 세대)

  • Jung, Jin Kyo;Seo, Bo Yoon;Park, Chang-Gyu;Ahn, Seung-Joon;Kim, Ju Il;Cho, Jum Rae
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.383-392
    • /
    • 2015
  • We investigated the induction of pupal diapause and number of generation for H. armigera using outdoor rearing and sex pheromone trapping in Suwon, Korea. Over-wintering pupae were induced when neonate larvae were reared in the outdoors from late Aug. to early Oct. in 2013 and 2014. H. armigera adults emerged from late May to early Jun. for 2013 colonies and from late May to late Jun. for 2014 colonies. The colonies placed after mid September produced only diapause pupae, to show environmental conditions that day-lengths on the rearing start date were 11 h 49 min~12 h 24 min, and mean temperatures before pupation were $14.8{\sim}20.7^{\circ}C$. Summer diapause was not observed in all colonies. The peak occurrence of H. armigera adults from sex pheromone trap in Suwon and Hwaseong were pooled and showed four generations (1st: from late Apr. to mid Jun., 2nd: from mid Jun. to late Jul., 3rd: from mid Jul. to late Aug., 4th: from late Aug. to mid Oct.). A degree-day model for development of H. armigera developed by Mironidis and Savopoulou-Soultani (2008) was used to validate the number of generation from field observations using pheromone traps. The 3rd and over-wintering generations were mainly overlapped. It was decided that H. armigera has one over-wintering and three complete generations in a year, and diapause is induced from offsprings of the 3rd and 4th generations adults. It is expected that larvae of the 1st and 2nd generations give a damage to ear zone in maize fields in which have been planted during April.

Genotype $\times$ Environment Interaction of Rice Yield in Multi-location Trials (벼 재배 품종과 환경의 상호작용)

  • 양창인;양세준;정영평;최해춘;신영범
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.6
    • /
    • pp.453-458
    • /
    • 2001
  • The Rural Development Administration (RDA) of Korea now operates a system called Rice Variety Selection Tests (RVST), which are now being implemented in eight Agricultural Research and Extension Services located in eight province RVST's objective is to provide accurate yield estimates and to select well-adapted varieties to each province. Systematic evaluation of entries included in RVST is a highly important task to select the best-adapted varieties to specific location and to observe the performance of entries across a wide range of test sites within a region. The rice yield data in RVST for ordinary transplanting in Kangwon province during 1997-2000 were analyzed. The experiments were carried out in three replications of a random complete block design with eleven entries across five locations. Additive Main effects and Multiplicative Interaction (AMMI) model was employed to examine the interaction between genotype and environment (G$\times$E) in the biplot form. It was found that genotype variability was as high as 66%, followed by G$\times$E interaction variability, 21%, and variability by environment, 13%. G$\times$E interaction was partitioned into two significant (P<0.05) principal components. Pattern analysis was used for interpretation on G$\times$E interaction and adaptibility. Major determinants among the meteorological factors on G$\times$E matrix were canopy minimum temperature, minimum relative humidity, sunshine hours, precipitation and mean cloud amount. Odaebyeo, Obongbyeo and Jinbubyeo were relatively stable varieties in all the regions. Furthermore, the most adapted varieties in each region, in terms of productivity, were evaluated.

  • PDF

Computing the Dosage and Analysing the Effect of Optimal Rechlorination for Adequate Residual Chlorine in Water Distribution System (배.급수관망의 잔류염소 확보를 위한 적정 재염소 주입량 산정 및 효과분석)

  • Kim, Do-Hwan;Lee, Doo-Jin;Kim, Kyoung-Pil;Bae, Chul-Ho;Joo, Hye-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.916-927
    • /
    • 2010
  • In general water treatment process, the disinfection process by chlorine is used to prevent water borne disease and microbial regrowth in water distribution system. Because chlorines were reacted with organic matter, carcinogens such as disinfection by-products (DBPs) were produced in drinking water. Therefore, a suitable injection of chlorine is need to decrease DBPs. Rechlorination in water pipelines or reservoirs are recently increased to secure the residual chlorine in the end of water pipelines. EPANET 2.0 developed by the U.S. Environmental Protection Agency (EPA) is used to compute the optimal chlorine injection in water treatment plant and to predict the dosage of rechlorination into water distribution system. The bulk decay constant ($k_{bulk}$) was drawn by bottle test and the wall decay constant ($k_{wall}$) was derived from using systermatic analysis method for water quality modeling in target region. In order to predict water quality based on hydraulic analysis model, residual chlorine concentration was forecasted in water distribution system. The formation of DBPs such as trihalomethanes (THMs) was verified with chlorine dosage in lab-scale test. The bulk decay constant ($k_{bulk}$) was rapidly decreased with increasing temperature in the early time. In the case of 25 degrees celsius, the bulk decay constant ($k_{bulk}$) decreased over half after 25 hours later. In this study, there were able to calculate about optimal rechlorine dosage and select on profitable sites in the network map.

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

Effects of Low Air Temperature and Light Intensity on Yield and Quality of Tomato at the Early Growth Stage (정식 초기의 저온·저일조가 토마토 수량·품질에 미치는 영향)

  • Wi, Seung Hwan;Yeo, Kyung-Hwan;Choi, Hak Soon;Yu, Inho;Lee, Jin Hyong;Lee, Hee Ju
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.448-454
    • /
    • 2021
  • This study was conducted to the effect of low air temperature and light intensity conditions on yield and quality of tomato at the early stage of growth in Korea. Inplastic greenhouses, low temperature and low temperature with shade treatments were performed from 17 to 42 days after plant. Tomato growing degree days were decreased 5.5% due to cold treatment during the treatment period. Light intensity decreased 74.7% of growing degree days due to shade. After commencing treatments, the plant growth decreased by low temperature and low radiation except for height. Analysis of the yield showed that the first harvest date was the same, but the yield of the control was 3.3 times higher than low temperature with shade treatment. The cumulative yields at 87 days after transplanting were 1734, 1131, and 854 g per plant for control, low temperature, and low temperature with shade, respectively. The sugar and acidity of tomatoes did not differ between treatment and harvesting season. To investigate the photosynthetic characteristics according to the treatment, the carbon dioxide reaction curve was analyzed using the biochemical model of the photosynthetic rate. The results showed that the maximum photosynthetic rate, J (electric transportation rate), TPU (triose phosphate utilization), and Rd (dark respiration rate) did not show any difference with temperature, but were reduced by shading. Vcmax (maximum carboxylation rate) was decreased depending on the low temperature and the shade. Results indicated that low temperature and light intensity at the early growth stage can be inhibited the growth in the early stage but this phenomenon might be recovered afterward. The yield was reduced by low temperature and low intensity and there was no difference in quality.

Groundwater Recharge Evaluation on Yangok-ri Area of Hongseong Using a Distributed Hydrologic Model (VELAS) (분포형 수문모형(VELAS)을 이용한 홍성 양곡리 일대 지하수 함양량 평가)

  • Ha, Kyoochul;Park, Changhui;Kim, Sunghyun;Shin, Esther;Lee, Eunhee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, one of the distributed hydrologic models, VELAS, was used to analyze the variation of hydrologic elements based on water balance analysis to evaluate the groundwater recharge in more detail than the annual time scale for the past and future. The study area is located in Yanggok-ri, Seobu-myeon, Hongseong-gun, Chungnam-do, which is very vulnerable to drought. To implement the VELAS model, spatial characteristic data such as digital elevation model (DEM), vegetation, and slope were established, and GIS data were constructed through spatial interpolation on the daily air temperature, precipitation, average wind speed, and relative humidity of the Korea Meteorological Stations. The results of the analysis showed that annual precipitation was 799.1-1750.8 mm, average 1210.7 mm, groundwater recharge of 28.8-492.9 mm, and average 196.9 mm over the past 18 years from 2001 to 2018 in the study area. Annual groundwater recharge rate compared to annual precipitation was from 3.6 to 28.2% with a very large variation and average 14.9%. By the climate change RCP 8.5 scenario, the annual precipitation from 2019 to 2100 was 572.8-1996.5 mm (average 1078.4 mm) and groundwater recharge of 26.7-432.5 mm (average precipitation 16.2%). The annual groundwater recharge rates in the future were projected from 2.8% to 45.1%, 18.2% on average. The components that make up the water balance were well correlated with precipitation, especially in the annual data rather than the daily data. However, the amount of evapotranspiration seems to be more affected by other climatic factors such as temperature. Groundwater recharge in more detailed time scale rather than annual scale is expected to provide basic data that can be used for groundwater development and management if precipitation are severely varied by time, such as droughts or floods.

Variation Analysis of Sea Surface Temperature in the East China Sea during Summer (동중국해에서 하계 표층수온의 변화 분석)

  • Park, GwangSeob;Lee, Taehee;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.953-968
    • /
    • 2018
  • In order to understand the change of surface water temperature in the East China Sea (ECS), this study analyzed the relationship between sea surface temperature (SST), air temperature (AT) and heat flux using satellite and model reanalysis data from 2003 to 2017. SST in the ECS showed the lowest (average : $13.72^{\circ}C$) in March and the highest (average : $28.12^{\circ}C$) in August. AT is highly correlated with SST and shows a similar seasonal change. In August, SST is higher than AT and then continuously higher than AT until winter. To analyze the change of the summer SST in the ECS, we used the SST anomaly value in August to classify the periods with positive (04', 06', 07', 13', 16', 17') and negative (03', 05', 08', 09', 10', 11', 12', 14', 15') values. Spatial similarity between the two periods indicates that SSTs are relatively larger variations in the northern part than in the southern part, and in the western part than in the eastern part in the study area. AT and net heat flux values also show similar changes with SST. However, the periods of the positive SST anomaly have the relatively increasing SST, AT and heat flux values compared to the periods of the negative SST anomaly in the summer season of the ECS. Although the change of SST in the summer season generally well correlates with AT, there were the periods when it was different from general trends between SST and AT (10', 12', 15', 16'). SST in August 2010 and 2012 decreased by $0.5^{\circ}C$ from AT. It suggests that the decreasing SST was considered to be caused by the effects of the typhoon passing through the study area. In August 2015, AT was relatively lower than SST (> $0.5^{\circ}C$), which is might be weakening of the East Asian Summer Monsoon. In August 2016, SST and AT show the highest values during the whole study periods, but SST is higher than AT (> $1^{\circ}C$). From satellite and heat flux data, the variations of SST have been shown to be relatively higher in the area of the expansion Changjiang Diluted Water (CDW) originated from the China coast. More research is needed to analyze this phenomenon, it is believed as not only the effect of rising AT but also the expansion of the low-salinity water.

Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring (봄철 과수 꽃눈 발육 수준에 따른 저온해 위험도 산정)

  • Kim, Jin-Hee;Kim, Dae-jun;Kim, Soo-ock;Yun, Eun-jeong;Ju, Okjung;Park, Jong Sun;Shin, Yong Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The flowering seasons can be advanced due to climate change that would cause an abnormally warm winter. Such warm winter would increase the frequency of crop damages resulted from sudden occurrences of low temperature before and after the vegetative growth stages, e.g., the period from germination to flowering. The degree and pattern of freezing damage would differ by the development stage of each individual fruit tree even in an orchard. A critical temperature, e.g., killing temperature, has been used to predict freeze damage by low-temperature conditions under the assumption that such damage would be associated with the development stage of a fruit flower bud. However, it would be challenging to apply the critical temperature to a region where spatial variation in temperature would be considerably high. In the present study, a phenological model was used to estimate major bud development stages, which would be useful for prediction of regional risks for the freeze damages. We also derived a linear function to calculate a probabilistic freeze risk in spring, which can quantitatively evaluate the risk level based solely on forecasted weather data. We calculated the dates of freeze damage occurrences and spatial risk distribution according to main production areas by applying the spring freeze risk function to apple, peach, and pear crops in 2018. It was predicted that the most extensive low-temperature associated freeze damage could have occurred on April 8. It was also found that the risk function was useful to identify the main production areas where the greatest damage to a given crop could occur. These results suggest that the freezing damage associated with the occurrence of low-temperature events could decrease providing early warning for growers to respond abnormal weather conditions for their farm.