• Title/Summary/Keyword: 온도계수(temperature coefficient)

Search Result 878, Processing Time 0.029 seconds

Temperature Effect on Effective Diffusion Coefficients of Zn and Cd through Column Diffusion Tests (칼럼 확산 실험을 통한 아연 및 카드뮴의 유효확산계수에 미치는 온도영향)

  • Dho, Nam-Young;Lee, Seung-Rae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.13-26
    • /
    • 2002
  • In this study, column diffusion tests for Cd and Zn were conducted at $15^{\circ}C$ and $55^{\circ}C$ to investigate a temperature effect on effective diffusion coefficient. An increase in temperature from $15^{\circ}C$ to $55^{\circ}C$ caused up to ten times larger diffusion coefficient for each heavy metal. Besides, it caused the increased retardation of heavy metals, and hence the effective diffusion coefficient should be overestimated as we use an overestimated retardation factor to calibrate the coefficient. The results of sequential extraction analyses showed that Zn was occluded in carbonate phase and this trend was getting prominent with the increase in temperature. As for Cd, it was partitioned mainly in the exchangeable phase(over 60%) at any temperature.

  • PDF

Characteristics of Thermal Coefficient of Fiber Bragg Grating for Temperature Measurement (온도 측정을 위한 광섬유 브래그 격자 센서의 온도 계수 특성 평가)

  • Kim, Heon-Young;Kang, Donghoon;Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.999-1005
    • /
    • 2013
  • A fiber Bragg grating sensor is considered a smart sensor that shows outstanding performance in the field of structural health monitoring (SHM). It has a powerful advantage, especially that of multiplexing, which enables several parameters to be sensed at multiple points by using a single optical fiber line. Among several parameters, the thermal expansion coefficient and thermo-optic coefficient are required to measure temperature. In previous studies, these were considered constant variables. This study shows that two parameters vary with temperature and newly proposes a temperature function for these two parameters. Specifically, these two parameters were defined as a single variable, and then, it was experimentally verified that this variable is a function of temperature. Finally, it was shown that temperature from RT to $100^{\circ}C$ was precisely measured by using the temperature function that was defined through the experiment.

Estimation of Overall Heat Transfer Coefficient for Single Layer Covering in Greenhouse (일중 피복온실의 관류열전달계수 산정)

  • Hwang, Young-Yun;Lee, Jong-Won;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.108-115
    • /
    • 2013
  • This study was conducted to suggest a model to calculate the overall heat transfer coefficient of single layer covering for various greenhouse conditions. There was a strong correlation between cover surface temperature and inside air temperature of greenhouse. The equations to calculate the convective and radiative heat transfer coefficients proposed by Kittas were best fitted for calculation of the overall heat transfer coefficient. Because the coefficient of linear regression between the calculated and measured cover surface temperature was founded to 0.98, the slope of the straight line is 1.009 and the intercept is 0.001, the calculation model of overall heat transfer coefficient proposed by this study is acceptable. The convective heat transfer between the inner cover surface and the inside air was greater than the radiative heat transfer, and the difference increased as the wind speed rose. The convective heat transfer between the outer cover surface and the outside air was less than the radiative heat transfer for the low wind speed, but greater than for the high wind speed. The outer cover convective heat flux increased proportion to the inner cover convective heat flux linearly. The overall heat transfer coefficient increased but the cover surface temperature decreased as the wind speed increased, and the regression function was founded to be logarithmic and power function, respectively.

Measuring Convective Heat Transfer Coefficient of Nanofluids Considering Effect of Film Temperature Change over Heated Fine Wire (막온도 변화를 고려한 가는 열선주위 나노유체의 대류열전달계수 측정 실험)

  • Lee, Shinpyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.725-732
    • /
    • 2013
  • This study examined the convective heat transfer characteristics of nanofluids flowing over a heated fine wire. Convective heat transfer coefficients were measured for four different nano-engine-oil samples under three different temperature boundary conditions, i.e., both or either variation of wire and fluid temperature and constant film temperature. Experimental investigations that the increase in the convective heat transfer coefficients of nanofluids in the internal pipe flow often exceeded the increase in thermal conductivity were recently published; however, the current study did not confirm these results. Analyzing the behavior of the convective heat transfer coefficient under various temperature conditions was a useful tool to explain the relation between the thermal conductivity and the boundary layer thickness of nanofluids.

An Implementation of Temperature Independent Bias Scheme in Voltage Detector (온도에 무관한 전압검출기의 바이어스 구현)

  • Moon, Jong-Kyu;Kim, Duk-Gyoo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.34-42
    • /
    • 2002
  • In this paper, we propose a temperature independent the detective voltage source in voltage detector. The value of a detective voltage source is designed to become m times of silicon bandgap voltage at zero absolute temperature. By properly choosing the temperature coefficient of diode, the temperature coefficient of a concave voltage nonlinearities generated by the ${\Delta}V_{BE}$ section of diode between base and emitter of transistors with a different area can be summed with convex nonlinearities the $V_{BE}$ voltage to achieve the near zero temperature coefficient of the detective voltage source. We designed that the value of a detective voltage can be varied by ${\Delta}V_{BE}$, the $V_{BE}$multiplier circuit and resistor. In order to verify the performance of a proposed detective voltage source, we manufactured the voltage detector IC for 1.9V which is fabricated in $6{\mu}m$ Bipolar technology and measured the operating characteristics, the temperature coefficient of a detective voltage. To reduce the deviation of a detective voltage in the IC process step, we introduced a trimming technology, ion implantation and an isotropic etching. In manufactured IC, the detective voltage source could achieve the stable temperature coefficient of 29ppm/$^{\circ}C$ over the temperature range of -30$^{\circ}C$ to 70$^{\circ}C$. The current consumption of a voltage detector constituted by the proposed detective voltage source is $10{\mu}A$ from 1.9V-supply voltage at room temperature.

Calculation of Creep Coefficient for Concrete Structures Applying Time Step Analysis for Relative Humidity and Temperature (상대습도 및 온도에 대한 시간 단계 해석을 적용한 콘크리트 구조의 크리프계수 산정 )

  • Kyunghyun Kim;Ki Hyun Kim;Inyeol Paik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.75-83
    • /
    • 2023
  • As part of a study to analyze the excessive camber occurring in prestressed concrete railway bridges, this paper presents a calculation method and analysis results for the creep coefficient which defines the increase in camber of a concrete structure over time. Using the creep coefficient formula of the design code, the coefficient is obtained by applying the climatic conditions (relative humidity and temperature) of 12 regions in Korea. The effects of differences in climatic conditions by region and starting time of load on the creep coefficient are analyzed. In order to properly calculate the creep, most of which occurs in the early stages of loading, a detailed analysis is performed by applying a time step analysis method to consider varying climate conditions through loaded period. The creep coefficient obtained by applying the average climate conditions of the region is similar to the average of the creep coefficients obtained by time step analysis. Through time step analysis, it is shown that the offset and overlap effects of relative humidity and temperature on the creep coefficient and the climate effect at the time of initial loading can be appropriately represented.

Variation of the Overall Heat Transfer Coefficient of Plastic Greenhouse Covering Material (플라스틱온실 피복재의 관류열전달계수 변화)

  • Lee, Hyun-Woo;Diop, Souleymane;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • The objective of the present study is to provide the basic data necessary for estimating the overall heat transfer coefficient of commercial plastic greenhouse. The heat flow through covering of greenhouses was measured and the variation of overall heat transfer coefficient was analyzed. Because the inside-outside temperature difference of greenhouse to indicate the stabilized overall heat transfer coefficient was different depending on the number of covering layers, the actual overall heat transfer coefficient should be decided in range of inside-outside temperature difference to make the coefficient constant for each covering method. The variation trend of the overall heat transfer coefficient according to the inside-outside temperature difference corresponded with the existing research results, but the specific values of temperature difference to present the stabilized overall heat transfer coefficient were different each other. The increase rates of overall heat transfer coefficient with wind speed were quite dissimilar among several research results and the quantity of heat loss through covering according to the wind speed in the double layers covered or curtained greenhouse was less than that in the single layer covered greenhouse. Because there was large variations among the values of overall heat transfer coefficient for the polyethylene film greenhouses, it was required to establish the standardized environmental condition for experiment measuring heat flow through covering in commercial greenhouse.

Temperature Characteristics of Elastic Surface Wave (탄성표면파의 온도특성)

  • 김종상
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.3
    • /
    • pp.53-60
    • /
    • 1973
  • Calculations of the temperature coefficients of the elastic surface wave velocity and delay time were performed for the propagation along the X axis of rotated Y cut plane of the LiNbO3 and LiTaO3. Measurements of the temperature dependence of delay time of the elastic surface wave were also performed for the propagation along the X axis of a 130" rotated Y cut plane of the LiNb03 at the temperature range from liquid He to room temperature. Experimental value 70$\times$10-6/$^{\circ}C$ of the temperature coefficient of the delay time of the elastic surface wave agrees well with the calculated value 72.7$\times$10-a/$^{\circ}C$. The temperature coefficient of delay time of elastic surface wave propagating along the X axis of a 130$^{\circ}$ rotated Y cut plane o( the LiNbO3 is approximately 16$\times$10-6/$^{\circ}C$ at the near temperature of liquid He.d He.

  • PDF

Development of Wear Equation according to Friction Coefficient and Temperature using a Dual Leaf-Spring in the Sliding Test (판스프링을 사용한 마모실험에서 마찰계수와 마찰온도를 고려한 마모식의 개선)

  • Kim, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • The wear behavior as the hardness of the sliding elements on the dry wear has been investigated using a dual leaf-spring. The materials of the specimens are used as ten kinds along their hardness. In this study, both upper and lower specimens have been used the same materials. Using experimental data, we figured the relationship between wear coefficient and friction coefficient, and the relationship between wear coefficient and friction temperature. Also we combined friction temperature and friction coefficient instead of wear coefficient. We substituted this into wear equation of Archard. The result had been derived a newly wear equation in using dual leaf-spring wear system.

  • PDF

Effect of Heating Medium and Evaporation Temperatures on Concentration of Garlic Juice (가열 매체 및 증발온도가 마늘즙의 농축에 미치는 영향)

  • Kim, Byeong-Sam;Park, Noh-Hyun;Park, Moo-Hyun;Han, Bong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.301-305
    • /
    • 1992
  • Effect of heating medium and evaporation temperatures on a concentration ratio, a evaporation rate and a overall heat transfer coefficient during concentration of garlic juice by a centrifugal thin film evaporator were investigated. At constant feeding rate and evaporation temperature, the concentration ratio, the evaporation rate and the overall heat transfer coefficient increased with the increase of the steam temperature but those values increased slowly or decreased as a steam temperature exceeded $110^{\circ}C$. At the feeding rate of 50 kg/h and the steam temperature of $100^{\circ}C$ and below, those values decreased with the increase of evaporation temperature. But if a steam temperature became $100^{\circ}C$ and up, those values increased slowly and then decreased with the increase of the evaporation temperature until the evaporation temperature reached a critical value. At constant feeding rate, those values increased until the temperature difference between steam and evaporation temperatures became $70^{\circ}C$. But if they become larger than $70^{\circ}C$, those values increased slowly and then decreased.

  • PDF