• Title/Summary/Keyword: 온도경사

Search Result 264, Processing Time 0.027 seconds

Analysis of the Performance of Solar Collector with Evacuated Tubes (진공관형 태양열집열기의 성능분석)

  • 이귀현;임대식
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.158-166
    • /
    • 2002
  • 진공관형 태양열집열기의 집열성능 및 집열특성 실험을 통하여 다음과 같은 결론을 얻을 수 있었다. 1) 집열성능 실험을 통하여 진공관형 태양열집열기의 순간집열효율이 60%로 높게 나타났다. 2) 진공관형 태양열집열기의 집열특성 실험에 의해 얻어진 결론은 다음과 같다. \circled1 경사각 0$^{\circ}$일 때 집열기에 조사된 광 강도는 630W/m$^2$이었으며, 5시간 24분의 광 조사 후 초기온도에 비해 물탱크내의 물 132$\ell$를 8.1$^{\circ}C$ 상승시켰다. \circled2 경사각 $10^{\circ}$일 때 광강도는 615W/m$^2$이었으며, 5시간 24분의 광 조사 후 초기온도에 비해 물탱크내의 물의 온도를 7.3$^{\circ}C$ 상승시켰다. \circled3 경사각 20$^{\circ}$일 때 광 강도는 605W/m$^2$이었으며, 5시간 24분의 광 조사 후 초기온도에 비해 물탱크의 물 132$\ell$을 6.6$^{\circ}C$ 상승시켰다. 집열기에 대한 솔라시뮬레이터의 경사각이 작을수록 광 강도가 커 물탱크내의 물 온도를 크게 상승시키는 것으로 나타났다.

  • PDF

Analysis of Temperature Gradients in Greenhouse Equipped with Fan and Pad System by CFD Method (CFD 기법을 이용한 팬 앤 패드 냉방 온실의 온도경사 분석)

  • Nam Sang Woon;Giacomelli Gene A.;Kim Kee Sung;Sabeh Nadia
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.76-82
    • /
    • 2005
  • Evaporative cooling pad system is one of the main cooling methods in greenhouses and its efficiency is very high. However, it has some disadvantages such as greenhouse temperature distributions are not uniform and installation cost is expensive. In this study, a CFD simulation model f3r predicting the air temperature distribution in the fan and fad cooling greenhouse was developed. The model was calibrated and validated against experimental data and a good fit was obtained. The influence of different outside wind, fan and pad height, ventilation rate, shading, and greenhouse length, were then examined. In order to reduce the internal temperature gradients, it is desired that the prevail wind direction and the fan and pad heights are considered. The simulation indicates that high ventilation rates and shading contribute to reduce the temperature gradients in the fan and pad cooling greenhouse. In order to maintain the desired greenhouse temperature, the pad-to-fan distance should be restricted according to the design climate conditions, shading and ventilation rates. The developed CFD model can be a useful tool to evaluate and design the fan and pad systems in the greenhouses with various configurations.

Adiabatic wall temperature distribution on a plate as under-expanded ratio and impinging angle (과소팽창비와 경사각에 따른 평판에서의 단열벽면온도분포)

  • Sun Yu Man;Cho Hyung Hee;Hwang Ki Young;Bae Ju Chan;Lee Jang Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.113-118
    • /
    • 2004
  • Experiments are conducted to get basic information of under-expanded impinging jet in the near field. Experimental parameters are impinging angle and under-expanded ratio. As the under-expanded ratio increases, the maximum surface pressure decreases and the reducing effect of recovery factor increases. As the impinging angle decreases, the peak of surface pressure is displaced slightly from the geometric center of the plate to the upward region and the cooling region is expanded in the downward region, whereas it is contracted in the upward region.

  • PDF

Temperature-Dependent Stress Analysis of Rotating Functionally Graded Material Gas Turbine Blade Considering Operating Temperature and Ceramic Particle Size (운전온도와 세라믹 입자크기를 고려한 회전하는 경사기능성 가스터빈 블레이드의 응력해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.193-203
    • /
    • 2014
  • Temperature-dependent stress analysis and heat transfer analysis of a rotating gas turbine blade made of functionally graded materials (FGMs) are presented considering turbine operating temperature and ceramic particle size. The material properties of functionally graded materials are assumed to vary continuously and smoothly across the thickness of the thin-walled blade. For obtaining system stiffness reflecting these characteristics, the one-dimensional heat transfer equation is applied along the thickness of the thin-walled blade for determining the temperature distribution. Using the results of the temperature analysis, the equations of motion of a rotating blade are derived with hybrid deformation variable modeling method along with the Rayleigh-Ritz assumed mode methods. The validity of the derived rotating blade model is evaluated by comparing its transient responses and temperature distribution with the results obtained using a commercial finite element code. The maximum tensile stress with operating speed and gradient index are obtained. Furthermore, the gradient index that minimizes blade temperature was investigated.

Relationship Analysis between Topographic Factors and Land Surface Temperature from Landsat 7 ETM+ Imagery (Landsat 7 ETM+ 영상에서 얻은 지표온도와 지형인자의 상관성 분석)

  • Lee, Jin-Duk;Bhang, Kon Joon;Han, Seung Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.482-491
    • /
    • 2012
  • Because the satellite imagery can detect the radiative heat from the surface using the thermal IR (TIR) channel, there have been many efforts to verify the relationship between the land surface temperature (LST) and urban heat island. However, the relationship between geomorphological characteristics like surface aspects and LST is relatively less studied. Therefore, the geomorphological elements, for example, surface aspects and surface slopes, are considered to evaluate their effects on the change of the surface temperature distribution using the Landsat 7 ETM+ TIR channel and the possibility of the image to detect anthropogenic heat from the surface. We found that the surface aspect is ignorable but the surface slope with the sun elevation influences on the surface temperature distribution. Also, the radiative heat from the surface to the atmosphere could not be accurately recorded by the satellite image due to the surface slope but the slope correction process used in this study could correct the surface temperature under slope condition and the slope correction, in fact, was not influenced on the average temperature of the surface. The possibility of the anthropogenic heat detection from the surface from the satellite imagery was verified as well.

Effect of Direct Solar Radiation with Sloped Topography in a Mesoscale Meteorological Model (중규모 기상모형에서 지표면 경사를 고려한 직달 복사량의 효과)

  • Shin, Sun-Hee;Lee, Young-Sun;Ha, Kyung-Ja
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.45-59
    • /
    • 2006
  • In this study, the effects of the surface topographical characteristics on the meteorological fields are examined in a mesoscale meteorlolgical model. We calculated the direct solar radiation using the illumination angle considering the inclination of topography and tried to find out its effect on meteorological fields. In above experiments, we selected two cases for the clear day and the cloudy day to show the effect of weather and represented the results for two cases. In the correction of the direct solar radiation, the results of two cases indicate that there are obvious differences on the steep Taeback and Soback mountains. And on the time-series analysis the east-facing slope of these mountains receives the more direct solar radiation about $10-60W/m^2$ in the morning hours but lesser in the afternoon hours than the horizontal surface while it is opposite on the west-facing slope. And the results mentioned above are more obvious at clear day. With the same analysis method, at clear day, the surface skin temperature is higher at all hours than that on horizontal surface on the both of slope. At cloudy and rainy day, the surface skin temperature on the east-facing slope is higher in the morning hours but lower in the afternoon hours than that on horizontal surface. But on the west-facing slope, it is higher at all hours than that on horizontal surface. In the two cases, the temperature considering the slope of surface is almost higher than that on the horizontal surface. The wind is stronger than that on the horizontal surface with increasing pressure gradient force according as increasing temperature gradient around the Taeback and the Soback mountains.

  • PDF

The dynamic characteristics of upper hot gas layer and smoke propagation along with tunnel slope in case of fire (터널 내 화재 시 경사에 따른 온도층 및 연기유동 특성)

  • Rie, Dong-Ho;Kim, Ha-Young;Moon, Sung-Woong;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • The aim of this research is to analyse the dynamic characteristics of the hot upper smoke layer in case of fire in a tunnel. In order to get the result, computer simulation technique has been used. The fire scenarios were set on the basis of standard cross section of national and express highways through NIST's FDS. As the area of a tunnel increased, the influence of the wind velocity decreased. Furthermore, the influence of the slope of a road was reduced as the wind velocity increased. On the other hand, as the wind velocity increased, the influence of the slope of a road decreased. This phenomena is believed to be caused by the cooling effect of wind which is over 1 m/s in speed, hence, reducing the influence of the effect of slope.

Estimations of Moisture Profiles During Wood Drying Using an Unsteady-State Diffusion Model (II) - Experimental Verification for Red Oak - (비정상(非正常) 상태(狀態)의 확산(擴散)모델을 이용한 수분(水分) 경사(傾斜)의 예측(豫測) (II) - 실험적(實驗的) 검증(檢證) -)

  • Park, Jung-Hwan;Smith, William B.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.37-44
    • /
    • 1996
  • 포수상태(包水狀態)의 루부라참나무(Quercus rubra) 시험편을 3가지 등온조건(等溫條件)에서 건조한 결과를 비정상상태(非正常狀態)의 확산(擴散)모델로 추정한 결과와 비교하였다. 표면이 충분히 젖은 상태인 건조초기에는 불안정(不安定)한 확산현상(擴散現象)이 관찰되었으나, 함수율(含水率)별 건조속도의 변이를 Fick's의 확산법칙과 비교할 때 유사한 형태를 보였다. 실험에서 얻은 건조조건별 건조곡선은 확산모델의 수치해석(數値解析) 결과와 거의 일치하였으며, 같은 평위함수율(平衛含水率) 조건에서 건조온도의 증가는 목재표면 보다 내부의 함수율 변화에 더 크게 영향하여 결과적으로 낮은 온도에서의 건조조건이 목재 내의 수분경사(水分傾斜)를 급하게 하는 것으로 밝혀졌다. 본 연구를 통해 목재 건조 중의 내부에 발생하는 수분경사를 추정하는데 비정상상태의 확산모델이 모든 함수율 범위에 걸쳐 유용하게 사용될 수 있음이 밝혀졌다.

  • PDF

A Study on the Vertical Temperature Difference of Steel Box Girder Bridge by Field Measurement (실측에 의한 강박스거더교의 상하 온도차에 대한 연구)

  • Lee, Seong-Haeng;Park, Young-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.545-551
    • /
    • 2018
  • For domestic application of the temperature gradient model proposed by foreign design standards, a specimen of steel box girder bridge was fabricated with the following dimensions: 2.0 m width, 2.0 m height and 3.0 m length. Temperature was measured using 24 temperature gauges during the summer of 2016. The reliability of the measured data was verified by comparing the measured air temperature with the ambient air temperature of the Korea Meteorological Administration. Of the measured gauges, four temperature gauges that can be compared with the temperature difference of the Euro code were selected and used to analyze the distribution of the measured temperatures at each point. The reference atmospheric temperature for the selection of the maximum temperature difference was determined by considering the standard error. Maximum and minimum temperatures were calculated from the four selected points and the resulting temperature difference was calculated. The model for the temperature difference in the steel box girder bridge was shown by graphing the temperature difference. Compared to the temperature distribution of the Euro code, the presented temperature difference model showed a temperature difference of $0.9^{\circ}C$ at the top and of $0.3^{\circ}$ to $0.4^{\circ}C$ at the intermediate part. These results suggested that the presented model could be considered relatively similar to the Euro code The calculated standard error coefficient was 2.71 to 2.84 times the standard error and represents a range of values. The proposed temperature difference model may be used to generate basic data for calculating the temperature difference in temperature load design.

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.