• Title/Summary/Keyword: 옥상 녹화

Search Result 255, Processing Time 0.023 seconds

Feasibility of Green Network in a Highly-dense Urbanized Area by Introducing Urban Gardens (도시정원 도입을 위한 고밀 시가화지역 내 녹지 네트워크 구축 가능성 평가)

  • Choi, Heejoon;Lee, Junga;Sohn, Heejung;Cho, Donggil;Song, Youngkeun
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.2
    • /
    • pp.252-265
    • /
    • 2017
  • This study aims to analyze the landscape ecological characteristics of green spaces within built up area of high density and evaluate the potential applicability of green patches, thereby introducing urban garden for generating green networks in residence areas. To this end, Yeoksam-Dong was selected as the site area since it is classified as both green initiative zone and alienated area of park service in Seoul. First, the current condition of green spaces in Yeoksam-Dong was identified by five categories: Street trees, private garden, public pocket garden, rooftop garden, and park. Then, the landscape index analysis through FRAGSTATS and connectivity assessment via multi-buffer zone analysis were carried out for analyzing the green networks and evaluating the potential value of green space. The results showed that the degree to which green areas in the site were distributed is arranged in the order of street tree, private garden, public pocket garden, park, and rooftop garden. In case of the street trees whose total core area (TCA, $1,618m^2$) is as high as the park's ($1,128m^2$). Private garden has potential for green network in built up area of high density by gardening since the shape of the patches are irregular (ED = 78.1m/ha) and the average distance among the patches is close (ENN=33.9m). Public pocket garden has also potential for gardening according to the result that it was found to be distributed evenly (LPI=5.7%, SHEI=0.9) with exposing external disturbance ($TCA=66m^2$). For the green network, 84% of all the study site is covered by small green network in 50m butter range of connected green area. The effect of green network was expected through gardening in public pocket garden (27%) and street tree (26%). Accordingly, it is encouraged to actively utilize street tree, private gardens, and rooftop gardens and to establish the urban gardens like local-based community gardens in public pocket garden where a variety of activities can be carried out near residential areas. By doing so, green networks can effectively be established in built up area with high density. The results of this study can contribute positively to fostering the creation of various types of urban gardens.

Effect of Organic Fertilizer Application depends on Soil Depths on the Growth of Spiraea bumalda 'Gold Mound' in a Extensive Green Roof System (조방형 옥상녹화에서 노랑조팝나무의 활착에 미치는 토심별 유기질 토양개량제의 시용 효과)

  • Ju, Jin-Hee;Gu, Eun-Pyung;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.239-248
    • /
    • 2014
  • This study investigated the effects of soil depths and soil organic fertilizer application on the growth characteristics of Spiraea bumalda 'Gold Mound' in a extensive green roof system. The treatments were 3 soil depths (10, 15 and 25 cm) and 5 soil types in mixture of artificial soil and organic fertilizer. We measured plant height, leaf width, leaf length, number of flowers, visual quality and survival rate from March to October in 2011. The growing medium of 10 cm soil depth showed the highest plant growth in $A_1$ (amended soil 100%), and the lowest plant growth in $O_1A_4$ (organic fertilizer 20% + amended soil 80%) treatment. In case of 15 cm soil depth, Spiraea bumalda 'Gold Mound' showed a high leaf length and visual quality in $O_1A_2$(organic fertilizer 33% + amended soil 67%) treatment and high leaf width and number of flowers in $O_1$ (organic fertilizer 100%) treatment. $A_1$ treatment without organic fertilizer showed the lowest leaf length and poorest visual quality, and $O_1A_4$ treatment showed the lowest plant height and lowest number of flowers. At soil depth 25 cm, $O_1A_1$ (organic fertilizer 50% + amended soil 50%) treatment showed greater plant height, visual quality and number of flowers than other treatments. The leaf length and leaf width were more effective in $O_1$ treatment. $A_1$ treatment showed a relatively low leaf length, leaf width and visual quality. The higher the organic conditioner, the better the plant growth. And, survival rates of Spiraea bumalda 'Gold Mound' showed 92%, 88% and 76% at soil depths of 25 cm, 15 cm and 10 cm, respectively, in this a extensive green roof system. Therefore, the results showed that the growth of Spiraea bumalda 'Gold Mound' was affected by both soil quality and soil depth. Different optimal mixtures of organic fertilizer and amended soil were determined, depending upon soil depth.

Analysis of Nonpoint source Reduction at Andong Area Considering Changes in CN (CN의 변화에 따른 안동시 물순환 선도도시 조성계획의 비점오염부하 저감효과 분석)

  • Kwon, Heongak;Jung, Kangyoung;Kim, Shin;Shin, Sukho;Ahn, Jungmin;Kim, Gyeonghoon
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • Andong belongs to the Nakdong River Basin, Nakdong River is flowing through the city, including Andong dam and Imha dam. The runoff due to provincial transfer and impervious area has been increasing by urbanization increases and nonpoint source loads. In this study, we evaluate the runoff and nonpoint pollution loads in accordance with the development targeted at selected urban water cycle leading to Andong city. Andong city leading to the water cycle plan to evaluate the directly runoff and BOD, T-N and T-P nonpoint pollutant loads using the CN into account the temporal and spatial changes. Evaluation, direct runoff per year is 10.41 % if the green roof and a water permeable pavement replacement, water cycle parks and streets compositions, City impermeable layer improvements to be business including four kinds of scenario is applied to both the development and the BOD non-point pollutant loads 20.56%, T-N 9.55% and T-P pollution and nonpoint loads was investigated to be reduced 14.29%. Four kinds of low lapse rate of the development scenario of the highest thing urban impervious surface was investigated by improving business development prior year annual direct runoff is 6.25 %, BOD nonpoint pollution loads are 11.84%, T-N nonpoint pollution loads are 4.46 % and T-P was investigated by reducing pollutant loads to be 10.20%.

Rooftop Vegetable Garden for Green Roof System (옥상 텃밭용 채소를 이용한 인공지반 녹화연구)

  • Ha, Yoo Mi;Kim, Dong-Yeob;Gu, Kyung Hee;Hwang, Dong Kyu;Park, Hee Ryung;Yun, Seong Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.77-88
    • /
    • 2011
  • This study was carried out to investigate the effects of soil depth and planting density on the growth of lettuce, crown daisy, and strawberry on a rooftop condition using artificial soil as a growth media. The vegetable crops showed better growth for plant height (cm), plant width (cm), plant fresh weight (g), and Fo, Fm and Fv/m on 20cm depth soil than 10cm depth soil except strawberry. Planting density of $16/m^2$ and $64/m^2$ did not show significant differences on the growth of the crops. Soil moisture content and EC were low for 10cm depth soil in lettuce plots, whereas there was no significant differences on soil moisture and EC between two soil depth in strawberry plots. Hunter's L, a, and b values showed the leaf color of lettuce dark green on 20cm depth soil and reddish on 10cm depth soil. Results showed that soil depth suitable for crop growth on rooftop conditions was 20cm rather than 10cm. Growth response of the crops showed no significant difference between $16/m^2$ and $64/m^2$, indicating that planting density of 64 $plants/m^2$ could be practiced on rooftop conditions. Lettuce growth rapidly changed in control treatment in which leaves were not pinched out, while slowly changed in plants which leaves were periodically pinched out. In the case of control plot, it was impossible to harvest because withering of lower leaves after blossom on June 22. The plant of crown daisy in which pinching was not conducted, blossomed on June 7, and the plants were removed since its aesthetical value was lost. Strawberry seemed to be a suitable vegetable crop for rooftop conditions based on its high covering rate and extended growth period until late October. The soil depth 20cm and planting density 64 $plants/m^2$ were suitable for vegetable crops on green roof system using artificial soil.

Studies on Growth Characteristics and Shallow Green-Roof Systems of Sedum album L. Introduced in Korea (국내에 도입된 Sedum album L.의 생육 특성 및 저토심 옥상 녹화 시스템에 관한 연구)

  • Kim In-Hye;Huh Moo-Ryong;Huh Keun-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.5 s.112
    • /
    • pp.69-82
    • /
    • 2005
  • These studies were carried out (1) to investigate the growth characteristics of Sedum album L. in the field, (2) to propose a suitable shallow peen roof system for this plant, and (3) to evaluate plant growth in the proposed system over the long term. The growth characteristics, such as morphological properties, growth habit, shade tolerance, and flowering, were surveyed. In experimental shallow green-roof systems, the effects of drainage type, substrate type, and soil depth on plant growth were investigated. Then drought tolerance was investigated. After planting Sedum album L. in the proposed system survival rate, cover, and resistance to insects, heal and cold were evaluated for about 2 years. The results of these studies are summarized below. 1. In the field, the aboveground part of Sedum album L. did not die back during the winter. Plant height was 4$\sim$7 cm. Roots were distributed to a depth of 5$\sim$7 cm. Sedum album L. is a compact ground-cover plant that spreads vigorously. Shading condition of less than $30\%$ of full sunlight didn't cause any trouble, but shading conditions above $87\%$ made the shape of the shoots and leaves abnormal. The plant bloomed from June to August and had a rather large compound umbel of white, star-shaped flowers. 2. Two systems, a drainage-blend-10 cm soil depth and a reservoir$\cdot$drainage-blend-15 cm soil depth, performed best in terms of cover, fresh weight, and dry weight. The first has an advantage for green roofs because it is lighter than the latter. 3. In drainage-blend-10 m soil depth and modified reservoir · drainage-blend-10 cm soil depth system no plants died for about 4 months after stopping the irrigation. The visual quality of the latter system was above 5 for 4 months and that of the former was under 5 after 2 months. In the field, however, the drought tolerance of Sedum album L. grown in the former would be enough to withstand the dry season. Considering the urban ecosystem and the importance of healthy growth the modified reservoir $\cdot$ drainage-blend-10 cm soil depth system was finally recommended. This system was composed of a 4 cm thick drainage layer and drain outlets placed at a height of 2.5 cm. 4. In the proposed system, the survival rate was $100\%$, and there was no injury induced by insects and heat. The leaf density decreased a little in winter. Cover increased throughout the year. Sedum album L. was planted with a cover of 72$cm^{2}$ on 3 April 2003; on 16 June 2003 and 15 June 2004, cover was $132.66\pm$5.87 $cm^{2}$(1.8 times) and $886.98\pm$63.51 $cm^{2}$(12.3 times), respectively.

Comparison of The Importance of Evaluation Items for Landscape Performance and Sustainability Using Analytic Network Process (ANP) (ANP기법을 이용한 조경성능 및 친환경 평가항목 중요도 비교)

  • Ryu, Myeung-Ji;Lee, Hyung-Sook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.6
    • /
    • pp.45-52
    • /
    • 2019
  • As international criteria and standards are required in the fields of design and construction, landscape performance must also be considered not only for the value of the landscape but also for providing quality assurance and sustainability. Given the lack of research on landscape performance, the present research was purposed to analyze the importance of potential assessment categories and items using an analytical network process. A list of assessment items, which is composed of 20 items and 6 categories, was derived through a literature review and a preliminary survey of 11 landscape professionals. An ANP model was established and a survey was conducted among 30 landscape practitioners to determine the weight of priorities considering the criteria. The results of ANP showed that the categories of site selection, preservation and health, and convenience had high priorities while materials had the lowest importance score. For the assessment items, a monitoring plan was the highest importance, followed by cultural/ historic preservation, management cost reduction, and natural ground areas. Despite the difficulties in quantifying landscape achievements, most respondents agreed that there needs to be an evaluation system for landscape performance in order to assure the quality and sustainability of landscape development. More research and discussion are needed to develop an assessment system for landscape performance that is applicable to Korean context.

Change of Vegetation and Soil Characteristics of Green Roofs in Dongguk University (동국대학교 옥상녹화 지역의 식생 및 토양특성 변화)

  • Lee, Sang-Jin;Park, Gwan-Soo;Kim, Dong-Il;Lee, Dong-Kun;Kil, Sung-Ho;Jang, Seong-Wan;Park, Beom-Hwan;Yun, Jun-Young;Jang, Kwan-Woo;Lee, Ho-Young;Kwon, Oh-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.193-206
    • /
    • 2013
  • This study was to provide the base data on the status of vegetations and soils in green roofs by analyzing the soil and vegetation characteristics of 4 green roofs in Dongguk University in September 2012. Sanglokwon(SW), Dongguk Hall(DH), University Library(UL), and Information and Culture Hall P(IC) were established in 2005, 2008, 2009, and 2010, respectively. The areas of green roofs were $700m^2$, $2,300m^2$, $1,240m^2$, and $640m^2$ in SW, DH, UL, and IC respectively. The investigated floras of vascular plants were 26 families, 55 genera, 65 species in Sanglokwon(SW), 53 families, 99 genera, 112 species in Dongguk Hall(DH), 43 families, 77 genera, 84 species in University Library(UL), and 41 families, 71 genera, 75 species in Information and Culture Hall P(IC), respectively. A positive correlation is shown between the number of plant species and planting area. Total nitrogen, organic matter, and potassium in soil have positive correlation with the number of plant species. The number of plant species was proportional to area and increased more than twice after planting. About a quarter of the invaded plants (including native and naturalized species) were naturalized plants. The total soil depths including vegetation soil and drainage soil at SW, DH, UL, and IC were 20cm, 10cm, 10cm, and 8cm, respectively. The depths of vegetation soil at SW, DH, UL, and IC were <7cm, <3cm, <2cm, and <2cm respectively. The soil pH in vegetation soil ranged from 5.22 to 5.36, and from 6.13 to 6.39 in drainage soil. Available-P concentration ranged from 10.17 to 189.77mg/kg in vegetation soil and from 6.70 to 81.17mg/kg in drainage soil. Carbon concentration in vegetation soil ranged from 2.93 to 9.70%, and 2.93 to 9.70% in drainage soil. Carbon contents in 20cm, 10cm, 10cm, and 8cm soil depths were $2.62kg/m^2$, $1.89kg/m^2$, $0.50kg/m^2$, and $0.53kg/m^2$ at SW, DH, UL, and IC, respectively.

Evaluation on Adaptation of Zosia japonica as Effected by Different Green Roof System under Rainfed Conditon (무관수 옥상녹화시스템의 차이에 따른 들잔디 적응성 평가)

  • Ju, Jin-Hee;Kim, Won-Tae;Choi, Woo-Young;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1137-1142
    • /
    • 2010
  • This study proposes a guideline of a green roof system suitable for the local environment by verifying the growth of Zoysia japonica in a shallow, extensive, green roof system under rainfed condition. The experimental soil substrates into which excellent drought tolerance and creeping Z. japonica was planted were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$). The plant height, green coverage ratio, fresh weight, dry weight and chlorophyll contents of Z. japonica were investigated. For the soil thickness of 15cm, the plant height of Z. japonica was significantly as affected by the soil mixing ratio and it was shown in the order SL= $P_4P_4L_2$ < $P_7P_1L_2$ = $P_5P_3L_2$ < $P_6P_2L_2$. For the soil thickness of 25cm, the plant height was increased in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was not observed by soil the mixing ratio or soil thickness. However, the green coverage ratio was 86~90% with a good coverage rate overall. The chlorophyll contents of Z. japonica were not significantly affected by the soil mixing ratio in the soil thickness of 15cm, but were higher in the natural soil than in the artificial soil at 25cm soil thickness. The fresh weight and dry weight of Zoysia japonica were heavier in the 25cm thickness than in the 15cm thickness and in the artificial soil mixture than in the natural soil. The result indicated that the growth of Zoysia japonica was more effective in the 25cm soil thickness with artificial soil than in the 15cm soil thickness with natural soil in the green roof system under rainfed condition.

A Study on the Changes of Plant Species and Soil Environmental Characteristics on Green Roofs at Seoul Women's University (서울여자대학교 옥상녹화 지역의 식물 종 증감 및 토양환경 특성 변화)

  • Lee, Sang-Jin;Park, Gwan-Soo;Lee, Dong-Kun;Lee, Eun-Heui;Jang, Seong-Wan;Kim, Myeoung-Hee;Kil, Sung-Ho;Lee, Hang-Goo;Jang, Kwan-Woo;Park, Beom-Hwan;Yoon, Jun-Young;Kwon, Oh-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.6
    • /
    • pp.109-117
    • /
    • 2013
  • This study was carried out to investigate the changes of plant species and soil physicochemical properties on green roofs established at Seoul Women's University in 2005, 2006 and 2007. The plant species and soil properties were investigated in 2013. The areas of green roof sites ranged $90{\sim}100m^2$. There were floras of vascular plants of 12 families, 20 genera and 22 species in the 2005 site, 24 families, 37 genera and 38 species in the 2006 site, 14 families, 27 genera and 31 species in the 2007 site. The total number of plant species decreased in the 2005 and 2006 sites and increased in the 2007 site since established. High proportion of dispersal type was barochory in the 2005 and 2006 site, and autochory in the 2007 site. And the proportion of the compositae family was high in the introduced plants over the sites for the all study sites. Average pH and organic matter concentration of green roof soil were ranged from 5.25 to 5.96 and 7.17 to 8.96% in study sites. The organic matter concentration and pH of green roof soil were lower in 2013 than in the three establishment years. Carbon concentration of green roof soil in the three study sites were ranged from 4.16 to 5.30% and total soil carbon in 10cm depth were ranged form 1.57 to $1.98kg/m^2$.

An Analysis of the water balance of Low Impact Development Techniques According to the Rainfall Types (강우 유형에 따른 저영향개발 기법별 물수지 분석)

  • Yoo, Sohyun;Lee, Dongkun;Kim, Hyomin;Cho, Youngchul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2015
  • Urbanization caused various environmental problems like destruction of natural water cycle and increased urban flood. To solve these problems, LID(Low Impact Development) deserves attention. The main objective of LID is to restore the water circulation to the state before the development. In the previous studies about the LID, the runoff reduction effect is mainly discussed and the effects of each techniques of LID depending on rainfall types have not fully investigated. The objective of this research is to evaluate the effect of LID using the quantitative simulation of rainwater runoff as well as an amount of infiltration according to the rainfall and LID techniques. To evaluate the water circulation of LID on the development area, new land development areas of Hanam in South Korea is decided as the study site. In this research, hydrological model named STORM is used for the simulation of water balance associated with LID. Rainfall types are separated into two categories based on the rainfall intensity. And simulated LID techniques are green roof, permeable pavement and swale. Results of this research indicate that LID is effective on improvement of water balance in case of the low intensity rainfall event rather than the extreme event. The most effective LID technique is permeable pavement in case of the low intensity rainfall event and swale is effective in case of the high intensity rainfall event. The results of this study could be used as a reference when the spatial plan is made considering the water circulation.