• 제목/요약/키워드: 오토클레이브 양생

Search Result 21, Processing Time 0.02 seconds

Strength Development Properties of Alkali-Activated Slag Mortar by Autoclave Curing (오토클레이브 양생에 의한 알칼리활성슬래그 모르타르의 강도발현 특성)

  • Song, Jin-Gyu;Kim, Byeong-Jo;Oh, Myeong-hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.218-219
    • /
    • 2015
  • Precast concrete produced in the industry is advantage that easy to manage, and it save construction period in the field. The specimens according to the type of activator for AAS(Alkali-Activated Slag) mortar cured in an autoclave. The specimens of AAS mortar with sodium was shown the high rate of increase of the compressive strength.

  • PDF

Change in compressive strength of lightweight geopolymers after immersion (침지 후 경량 지오폴리머의 압축강도 변화)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.174-181
    • /
    • 2021
  • Lightweight geopolymers were fabricated by using IGCC (integrated gasification combined cycle) slag and Si sludge which are classified as general wastes (recyclable resources). Three curing methods were tried to investigate the changes in compressive strength and density according to the curing method and immersion time. Immersion period was tried up to 21 days to observe long-term performance in water. Compressive strength of the specimens cured in oven decreased abruptly with an increase in immersion time. Compressive strength of the specimen cured in autoclave was low after 3 and 7 day immersion; however, increased rapidly after 21 day immersion. On the contrary, compressive strength of the specimen cured in autoclave and oven was high but substantially decreased after 21 day immersion. Conclusively, it was speculated that oven curing is effective for the compressive strength development at early age; however, autoclave curing is more desirable for the long-term performance in water.

Strength Variations of Light Weight Foamed Concrete According to the Autoclaving Time (오토클레이브 양생시간에 따른 경량기포콘크리트의 강도 변화에 관한 실험적 연구)

  • Kang Cheol;Kang Gi Woong;Kang Eun Gu;Noh Jea Myoung;Kwon Gi Ju;Kim Jin Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.57-60
    • /
    • 2005
  • This is the experimental study on the strength development of the light weight concrete block according to the autoclaving time. The calcareous source used the cement, siliceous material used the bottom ash ground to fine particle, and the PP fiber used to increase toughness. The results of this experiment are as follows. According to the increase of autoclaving time and the fiber content, compressive and flexural strengths are increased. Despite of the changes of the autoclaving time, tobermorite was produced on each of the specimens. However, the phase of tobermorite was changed in accordance with the changes of autoclaving time.

  • PDF

Experimental Study on the Properties of Solid Material Made by Autoclave Curing according to CaO/SiO2 Ratio and W/B (CaO/SiO2비 및 W/B 변화에 따른 오토클레이브 양생 경화체의 특성에 관한 실험적 연구)

  • Kang, Cheol;Kang, Ki-Woong;Kim, Jin-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.557-563
    • /
    • 2009
  • This study is on the properties of inorganic porous calcium silicate material made from silica powder through the autoclaving curing, the results of this study should be utilized fundamental data for the development of noise reduction porous solid material using siliceous byproduct generated by various manufacture process. For the manufacture of autoclave curing specimen, various calcareous materials used and siliceous materials used silica powder. In this study, properties in density and compressive strength according to the change of W/B and C/S ratio, microscopy for the shape of pore, SEM and XRD for the examination of hydrate after autoclave curing are carried out respectively. The test results shown that the more slurry density decrease, the more W/B increase at the fresh state, this tendency shown similar to in hardened state. Among the specimens of C/S ratio, the compressive strength of C/S ratio of 0.85 gave the highest the compressive strength. In the results of XRD, tobermorite generated by autoclaving curing was created all of specimens regardless of C/S ratio. To ascertain pore structure, we compared with existing porous calcium silicate product(ALC, organic sound absorbing porous material). The results of microscope observation, pore structure of specimen of this study was similar to that of existing inorganic sound absorbing foam concrete. therefore, we could conformed a possibility of sound absorbing porous solid material on the basis of the results.

An Experimental Study on the Curing Method and PP Fiber Mixing Ratio on Spalling Resistance of High Strength Concrete (양생요인 및 PP 섬유 혼입율 변화에 따른 고강도 콘크리트의 폭렬특성)

  • Han, Cheon-Goo;Kim, Won-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.113-119
    • /
    • 2009
  • This study is to investigate the fundamental and fireproof qualities of high strength concrete corresponding to changes in the curing factors and the PP fiber ratio. The results were as follows. For the fundamental characteristics of concrete, the fluidity was reduced in proportion to the increase in the PP fiber ratio. The compressive strength was somewhat reduced according to an increase in the PP fiber ratio. However, it had the high strength scope of more than 60 MPa at 7 days and of more than 90 MPa at 28 days. On the spalling mechanism followed by changes of the water content ratio, spalling was prevented in all combinations, except the specimen without PP fiber and subjected to 3.0% of moisture contents. When spalling was prevented at that time, the residual compressive strength ratio was 22%~41% and the mass reduction ratio was 5%~7%, which was relatively favorable. As the spalling mechanism corresponds to changes in the curing method, spalling was prevented in concrete with a PP fiber mixing ratio of more than 0.05% in the event of standard curing, and in concrete with a PP fiber mixing ratio of more than 0.10% in the case of steam curing and autoclave curing. In these cases, when spalling was prevented, the residual compressive strength ratio was 23~42% and the mass reduction ratio was 7~11%. In these results, the ease of spalling prevention in high strength concrete was inversely proportional to the water content ratio. Depending on the curing method, spalling was prevented in concrete with over 0.05% PP fiber with standard curing and in concrete with over 0.1% PP fiber with steam curing and autoclave curing.

Fundamental Research on Reactivity of Silica Source in the Rapidly Cured Inorganic Micro-Defect-Free(MiDF) Concrete (촉진 양생한 무기계 MiDF 콘크리트에서 실리카질 원료의 반응성에 관한 기초 연구)

  • Choi, Hong-Beom;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.166-173
    • /
    • 2019
  • In this paper, the reaction properties of silica source in the accelerated curing conditions using autoclave and the fundamental properties of inorganic Micro Defect Free(MiDF) concrete using silica source are studied. Studies show that Si ions elution rate from silica source in autoclave curing is higher in amorphous source. In tap water conditions, solids which is source after autoclaved curing show a higher mass reduction in amorphous materials, which is attributed to the higher elution rate of ion. In $Ca(OH)_2$ solution conditions, amorphous materials show higher mass increase, due to increase in C-S-H minerals. From experiment for influence on the properties of MiDF concrete by using nano silica materials, the specimen with silica fume shows an increase in compressive strength and a decrease in absorption depending on replacement rate up to 5.5%, while nano silica with amorphous phase and high-fineness shows a decrease in compressive strength and decrease in the water absorption. The specimen with nano silica increases the pore below 10,000nm, but reduces pore between 10,000 and 100,000nm. The above results show that the porosity and absorption rate of MiDF concrete can be reduced by using amorphous nano-size silica. However, to reduce the pore of 50 to 10,000nm, better dispersion of nano material in the cement matrix will be necessary. We will focus on the this item in the next research.

Property change of geopolymers after immersion (지오폴리머의 침지 후 물성변화)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.247-257
    • /
    • 2021
  • This study was started to investigate why autoclave curing (AC) specimen showed an improvement in compressive strength after immersion in water for a long time, although AC specimen did not showed a high initial compressive strength unlike our expectations. Distilled water and alkaline solutions were used for immersion and three different curing methods were engaged. It was expected that the compressive strength would be improved after immersion in alkaline solutions; however, there was little difference in compressive strength after 21 day immersion because both new crystallites produced by additional geopolymerization and expansion caused by the alkaline aggregate reaction may prevent the additional improvement in compressive strength. It was concluded that in order to secure the long-term commonality and underwater stability of the geopolymers, it is desirable aging geopolymers while immersing it underwater for more than 21 days after curing using an autoclave.

The Study on the Surface Properties of Concrete Tile According to the Autoclave Curing (오토클레이브 양생에 따른 콘크리트 마감재의 표면특성에 관한 연구)

  • Choi Sun-Mi;Jung Ji-Yong;Jung Eun-Hye;Kawg Eun-Gu;Kim Jin-man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.77-80
    • /
    • 2005
  • The surface of concrete tiles is weak in moisture that it occurrenced efflorescence, but in the former study we found that it is possible to ensure moisture stability of concrete surface by autoclaving. So this study is to discuss the moisture stability and Physical Properties of high-strength glossy concrete according to time and temperature of autoclave curing. As the results, by increasing time and temperature of autoclave curing, compressive strength and surface hardness increased and glossiness decreased. In the case to 3 hour and $180^{\circ}C$ of autoclave curing, there is not effloescences in mosture stability test.

  • PDF

Fire Resistance of High Strength Concrete Pepending on Curing Method and Polypropylene fiber (양생방법 및 PP 섬유 혼입률 변화에 따른 고강도 콘크리트의 내화특성)

  • Son, Ho-Jung;Pei, Chang-Chun;Kim, Won-Ki;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.481-482
    • /
    • 2009
  • This study analyzed fire resistance characteristics of high strength concrete according to changes in curing method and PP fiber content, and the results are as follows. First in case of standard curing, spalling was prevented at PP fiber content of 0.05 % or higher. Autoclave and steam curing showed prevention of spalling at content of 0.1 % or higher. For residual compressive strength, measurement of strength for plain was impossible due to spalling phenomenon. A satisfactory trend was shown with increase in PP fiber content with the strength of about 30 MPa.

  • PDF

Chemical Properties of Light-weight Foamed Concrete Using WCP in Hydrothermal Reaction Condition (수열반응 조건에서 폐콘크리트 미분말을 사용한 경량기포콘크리트의 화학적 특성)

  • Park, Hyo-Jin;Lee, Kyung-Hyun;Kang, Cheol;Jeong, Ji-Yong;Lee, Dae-Geun;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.375-376
    • /
    • 2010
  • This study is shown the chemical characteristics by SEM and XRD for the Light-weight Foamed Concrete according to replacement ratio of WCP and the autoclave curing time. From the SEM of the Light-weight Foamed Concrete after hydrothermal raction, regardless of replacement ratio of WCP and the autoclave curing time, forms the crystal hydrates having various shapes such as board and fiber etc is generated. From the XRD, it seems that the tobermorite hydrate is originated from crystalized quartz.

  • PDF