Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.88-90
/
2003
비정상 행위와 정상행위를 구별하여 침입을 탐지하는 기법 중 오토마타를 이용해 정상 행위를 프로파일링 하는 기법이 연구되어왔다. 최근엔 다중 서열 정합(multiple sequence alignment)방법을 이용하여 오토마타 생성을 자동화하는 방법이 소개되었다. 그러나 이 방법은 시스템 콜의 서열을 정열하기 위해 추가적인 상태가 들어가게 때문에 오토마타가 너무 커지는 단점이 있다. 본 논문에서는 유전자 알고리즘을 이용하여 정상 서열을 인식하는 오토마타를 생성하는 방법을 제안한다.
하둡은 대표적인 빅데이터 처리 프레임워크로 널리 사용되고 있지만 하둡 어플리케이션은 고성능컴퓨팅 환경에서 하둡 분산파일시스템이 아닌 러스터 병렬 파일시스템 위에서도 수행될 수 있다. 그러나 이를 위해서 추가적으로 러스터 병렬파일시스템을 구축하고 관리하는 것은 시간 소모적인 업무가 될 수 있다. 본 연구는 러스터 병렬파일시스템의 오토 프로비저닝을 위한 암바리 서비스의 설계 방안에 대해서 제안한다. 암바리는 하둡 클러스터의 프로비저닝, 관리, 모니터링을 위한 운영 관리 프레임워크이며 운영자의 필요에 따라서 확장할 수 있는 서비스 프레임워크를 제공한다. 본 연구에서는 암바리를 통해서 러스터 병렬파일시스템을 오토 프로비저닝하고 관리하기 위한 확장 서비스를 설계하였으며 서비스를 위한 컴포넌트와 각 컴포넌트별 중요한 기능 사항에 대해서 논하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.69-70
/
2021
본 논문은 PPM으로 관리되고 있는 자동차 부품 제조 공정에서 검사자의 육안검사 방법을 대체하기 위해 머신비전 및 CNN 기반 불량 검출 시스템으로 제안되었던 방식들의 단점을 개선하기 위하여 기존 머신 비전 기술에 합성곱 오토인코더 모델을 적용하여 단점을 해결하였다. 본 논문에서 제시한 오토인코더를 이용하는 방법은 정상 생산품의 이미지만으로 학습을 진행하고, 학습된 모델은 불량 부위가 포함된 이미지를 입력받아 정상 이미지로 출력한다. 이 방법을 사용하여 불량의 부위와 크기를 알 수 있었으며 불량 여부의 판단은 임계치에 의한 불량 부위의 화소 수 계산으로 판단하였다.
This paper proposes a noise-tolerant image classification system using multiple autoencoders. The development of deep learning technology has dramatically improved the performance of image classifiers. However, if the images are contaminated by noise, the performance degrades rapidly. Noise added to the image is inevitably generated in the process of obtaining and transmitting the image. Therefore, in order to use the classifier in a real environment, we have to deal with the noise. On the other hand, the autoencoder is an artificial neural network model that is trained to have similar input and output values. If the input data is similar to the training data, the error between the input data and output data of the autoencoder will be small. However, if the input data is not similar to the training data, the error will be large. The proposed system uses the relationship between the input data and the output data of the autoencoder, and it has two phases to classify the images. In the first phase, the classes with the highest likelihood of classification are selected and subject to the procedure again in the second phase. For the performance analysis of the proposed system, classification accuracy was tested on a Gaussian noise-contaminated MNIST dataset. As a result of the experiment, it was confirmed that the proposed system in the noisy environment has higher accuracy than the CNN-based classification technique.
엄격한 시간 제약성에 의해 특성화되는 실시간 시스템의 성능을 평가하기 위해서 퍼지-랜덤 변수가 포함된 이산 사건 모델을 제시한다. 실시간 시스템의 정확성은 출력의 논리적 결과 뿐 아니라 반응시간에도 의존하므로, 본 논문에서는 실시간 시스템의 성능을 유연하게 평가하기 위해서 퍼지-랜덤 변수에 의해 적절하게 변형된 상태 오토마타를 제시하고 그 오토마타를 적용한 수치 예제를 제시한다.
Home service networked systems require a high-availability service with a proactive and practical fault management. However, as the system complexity grows, it is not easy to meet the requirement. Moreover, user may want to pay no attention to a sequence of complex or nervous maintenance jobs for system fault managements. Therefore, the home service networked systems must have self & remote fault management capability with a minimal human intervention for meeting high-availability requirement of the integrated systems that consist of the networked appliances or devices. In this paper, we present an autonomic healing utility equipped with a remote self-managing mechanism in order to both increase the availability of home service networked systems and decrease the maintenance cost.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.47-49
/
2023
사회적으로 복잡한 문제들이 시공간 형태로 문제 표현이 가능하고 이를 활용하여 문제를 해결하기 위한 연구들이 진행 중이다. 특히, 시뮬레이션 이론 중 하나인 BM-DEVS는 시공간 논리를 적용하여 실세계에서 일어나는 문제들을 시공간 규칙으로써 표현하였고 이를 모델에 적용하여 시스템에서 행위를 모니터링한다. 하지만 BM-DEVS에서는 시스템 차원에서 정의된 시공간 규칙들을 평가하기 위하여 Büchi 오토마타로의 변환과 오토마타를 모델들에 반영할 수 있어야 한다. 이를 위하여 시스템을 구축하는 모델러가 직접 규칙을 오토마타로 변환하는 작업을 해야하며 이에 대한 오토마타를 모델에 적용하기까지는 많은 시간이 소요된다. 이러한 문제를 해결하기 위해 본 논문에서는 모델링의 단순화를 위하여 시공간 규칙을 모델들에 자동적으로 적용하는 방법에 대하여 소개한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.506-509
/
2004
생물과 같이 외부 환경의 변화에 적응하는 능력을 갖도록 하기 위한 시스템을 다치오토마타를 사용하여 모델화하고 이들에 대하여 도태, 교배, 돌연변이 둥의 유전적 조작을 반복함 적용에 의해 유한 상태 전이 과정을 해석하고 응용할 수 있는 방법을 제안한다. 이러한 해석과 방법에 대한 모델을 기초로 자기 갱신할 수 있는 자율 오토마타와 환경에 적응할 수 있는 적응 오토마타를 실현하는 기초 단계로 적용할 수 있는 가능성을 제안한다.
A ubiquitous computing system could be constructed not only with one computer but with networks of computers (or ether devices with computing power) embedded in everyday objects. For this, dependability must be guaranteed for each single component of a system and for the whole system which might be more than just a sum of its components. This paper proposes an autonomic self-management mechanism that ran operate for 24 hours/day with the minimum human intervention. In addition, we validate the autonomic fault management scheme based on a workload model derived from the system log analysis.
Although there have been many studies on using finite automata for intrusion detection, it has been a difficult problem to generate compact finite automata automatically. In a previous research an approach to profile normal behaviors using finite automata was proposed. They divided the system call sequence of each process into three parts prefix, main portion, and suffix, and then substituted macros for frequently occurring substrings. However, the procedure was not automatic. In this paper we present algorithms to automatically generate intrusion detection automata from the sequence of system calls resulting from the normal runs of the programs. We also show the effectiveness of the proposed method through experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.