• Title/Summary/Keyword: 오탐지율

Search Result 61, Processing Time 0.024 seconds

Apple Detection Algorithm based on an Improved SSD (개선 된 SSD 기반 사과 감지 알고리즘)

  • Ding, Xilong;Li, Qiutan;Wang, Xufei;Chen, Le;Son, Jinku;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.81-89
    • /
    • 2021
  • Under natural conditions, Apple detection has the problems of occlusion and small object detection difficulties. This paper proposes an improved model based on SSD. The SSD backbone network VGG16 is replaced with the ResNet50 network model, and the receptive field structure RFB structure is introduced. The RFB model amplifies the feature information of small objects and improves the detection accuracy of small objects. Combined with the attention mechanism (SE) to filter out the information that needs to be retained, the semantic information of the detection objectis enhanced. An improved SSD algorithm is trained on the VOC2007 data set. Compared with SSD, the improved algorithm has increased the accuracy of occlusion and small object detection by 3.4% and 3.9%. The algorithm has improved the false detection rate and missed detection rate. The improved algorithm proposed in this paper has higher efficiency.

A robust detection algorithm against clutters in active sonar in shallow coastal environment (연안 환경에서 클러터에 강인한 능동소나 탐지 알고리듬)

  • Jang, Eun Jeong;Kwon, Sungchur;Oh, Won Tcheon;Lee, Jung Woo;Shin, Keecheol;Kim, Juho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.661-669
    • /
    • 2019
  • High frequency active sonar is appropriate for detecting small targets such as a diver in coast environment. In case of using high frequency active sonar in shallow coastal environment, a false alarm rate is high due to clutters caused by marine biological noise, ship noise, wake, etc. In this paper, we propose an algorithm for target detection which is robust against clutter in active sonar system in shallow coastal environment. The proposed algorithm increases the rate of reduction clutter using calculation of statistical characteristics of signal and a clustering method. The algorithm is evaluated and analysed with sea trial data, as a result, that shows the rate of reducing rate of clutter of 96 % and over.

Adversarial Example Detection Based on Symbolic Representation of Image (이미지의 Symbolic Representation 기반 적대적 예제 탐지 방법)

  • Park, Sohee;Kim, Seungjoo;Yoon, Hayeon;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.975-986
    • /
    • 2022
  • Deep learning is attracting great attention, showing excellent performance in image processing, but is vulnerable to adversarial attacks that cause the model to misclassify through perturbation on input data. Adversarial examples generated by adversarial attacks are minimally perturbated where it is difficult to identify, so visual features of the images are not generally changed. Unlikely deep learning models, people are not fooled by adversarial examples, because they classify the images based on such visual features of images. This paper proposes adversarial attack detection method using Symbolic Representation, which is a visual and symbolic features such as color, shape of the image. We detect a adversarial examples by comparing the converted Symbolic Representation from the classification results for the input image and Symbolic Representation extracted from the input images. As a result of measuring performance on adversarial examples by various attack method, detection rates differed depending on attack targets and methods, but was up to 99.02% for specific target attack.

Machine-learning-based out-of-hospital cardiac arrest (OHCA) detection in emergency calls using speech recognition (119 응급신고에서 수보요원과 신고자의 통화분석을 활용한 머신 러닝 기반의 심정지 탐지 모델)

  • Jong In Kim;Joo Young Lee;Jio Chung;Dae Jin Shin;Dong Hyun Choi;Ki Hong Kim;Ki Jeong Hong;Sunhee Kim;Minhwa Chung
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.109-118
    • /
    • 2023
  • Cardiac arrest is a critical medical emergency where immediate response is essential for patient survival. This is especially true for Out-of-Hospital Cardiac Arrest (OHCA), for which the actions of emergency medical services in the early stages significantly impact outcomes. However, in Korea, a challenge arises due to a shortage of dispatcher who handle a large volume of emergency calls. In such situations, the implementation of a machine learning-based OHCA detection program can assist responders and improve patient survival rates. In this study, we address this challenge by developing a machine learning-based OHCA detection program. This program analyzes transcripts of conversations between responders and callers to identify instances of cardiac arrest. The proposed model includes an automatic transcription module for these conversations, a text-based cardiac arrest detection model, and the necessary server and client components for program deployment. Importantly, The experimental results demonstrate the model's effectiveness, achieving a performance score of 79.49% based on the F1 metric and reducing the time needed for cardiac arrest detection by 15 seconds compared to dispatcher. Despite working with a limited dataset, this research highlights the potential of a cardiac arrest detection program as a valuable tool for responders, ultimately enhancing cardiac arrest survival rates.

Operational Ship Monitoring Based on Integrated Analysis of KOMPSAT-5 SAR and AIS Data (Kompsat-5 SAR와 AIS 자료 통합분석 기반 운영레벨 선박탐지 모니터링)

  • Kim, Sang-wan;Kim, Dong-Han;Lee, Yoon-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.327-338
    • /
    • 2018
  • The possibility of ship detection monitoring at operational level using KOMPSAT-5 Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) data is investigated. For the analysis, the KOMPSAT-5 SLC images, which are collected from the west coast of Shinjin port and the northern coast of Jeju port are used along with portable AIS data from near the coast. The ship detection algorithm based on HVAS (Human Visual Attention System) was applied, which has significant advantages in terms of detection speed and accuracy compared to the commonly used CFAR (Constant False Alarm Rate). As a result of the integrated analysis, the ship detection from KOMPSAT-5 and AIS were generally consistent except for small vessels. Some ships detected in KOMPSAT-5 but not in AIS are due to the data absence from AIS, while it is clearly visible in KOMPSAT-5. Meanwhile, SAR imagery also has some false alarms due to ship wakes, ghost effect, and DEM error (or satellite orbit error) during object masking in land. Improving the developed ship detection algorithm and collecting reliable AIS data will contribute for building wide integrated surveillance system of marine territory at operational level.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

Improvements in Design and Evaluation of Built-In-Test System (무기체계 정비성 향상을 위한 BIT 설계 및 검증 방안)

  • Heo, Wan-Ok;Park, Eun-Shim;Yoon, Jung-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • Built-In-Test is a design feature in more and more advanced weapon system. During development test and evaluation(DT&E) it is critical that the BIT system be evaluated. The BIT system is an integral part of the weapon system and subsystem. Built-In-Test assists in conducting on system and subsystem failure detection and isolation to the Line Replaceable Unit(LRU). This capability reduces the need for highly skilled personnel and special test equipment at organizational level, and reduces maintenance down-time of system by shortening Total Corrective Maintenance Time. During DT&E of weapon system the objective of BIT system evaluation is to determine BIT capabilities achieved and to identify deficiencies in the BIT system. As a result corrective actions are implemented while the system is still in development. Through the use of the reiterative BIT evaluation the BIT system design was corrected, improved, or updated, as the BIT system matured.

Change Attention-based Vehicle Scratch Detection System (변화 주목 기반 차량 흠집 탐지 시스템)

  • Lee, EunSeong;Lee, DongJun;Park, GunHee;Lee, Woo-Ju;Sim, Donggyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.228-239
    • /
    • 2022
  • In this paper, we propose an unmanned vehicle scratch detection deep learning model for car sharing services. Conventional scratch detection models consist of two steps: 1) a deep learning module for scratch detection of images before and after rental, 2) a manual matching process for finding newly generated scratches. In order to build a fully automatic scratch detection model, we propose a one-step unmanned scratch detection deep learning model. The proposed model is implemented by applying transfer learning and fine-tuning to the deep learning model that detects changes in satellite images. In the proposed car sharing service, specular reflection greatly affects the scratch detection performance since the brightness of the gloss-treated automobile surface is anisotropic and a non-expert user takes a picture with a general camera. In order to reduce detection errors caused by specular reflected light, we propose a preprocessing process for removing specular reflection components. For data taken by mobile phone cameras, the proposed system can provide high matching performance subjectively and objectively. The scores for change detection metrics such as precision, recall, F1, and kappa are 67.90%, 74.56%, 71.08%, and 70.18%, respectively.

Petrophysical Joint Inversion of Seismic and Electromagnetic Data (탄성파 탐사자료와 전자탐사자료를 이용한 저류층 물성 동시복합역산)

  • Yu, Jeongmin;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Seismic inversion is a high-resolution tool to delineate the subsurface structures which may contain oil or gas. On the other hand, marine controlled-source electromagnetic (mCSEM) inversion can be a direct tool to indicate hydrocarbon. Thus, the joint inversion using both EM and seismic data together not only reduces the uncertainties but also takes advantage of both data simultaneously. In this paper, we have developed a simultaneous joint inversion approach for the direct estimation of reservoir petrophysical parameters, by linking electromagnetic and seismic data through rock physics model. A cross-gradient constraint is used to enhance the resolution of the inversion image and the maximum likelihood principle is applied to the relative weighting factor which controls the balance between two disparate data. By applying the developed algorithm to the synthetic model simulating the simplified gas field, we could confirm that the high-resolution images of petrophysical parameters can be obtained. However, from the other test using the synthetic model simulating an anticline reservoir, we noticed that the joint inversion produced different images depending on the model constraint used. Therefore, we modified the algorithm which has different model weighting matrix depending on the type of model parameters. Smoothness constraint and Marquardt-Levenberg constraint were applied to the water-saturation and porosity, respectively. When the improved algorithm is applied to the anticline model again, reliable porosity and water-saturation of reservoir were obtained. The inversion results indicate that the developed joint inversion algorithm can be contributed to the calculation of the accurate oil and gas reserves directly.

Performance Comparison and Improvement of STDR/SSTDR Schemes Using Various Sequences (여러 가지 수열을 적용한 STDR/SSTDR 기법의 성능 비교 및 개선)

  • Han, Jeong Jae;Park, So Ryoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.637-644
    • /
    • 2014
  • This paper investigates the detection performance of fault location using STDR(sequence time domain reflectometry) and SSTDR(spread spectrum time domain reflectometry) with various length and types of sequences, and then, proposes an improved detection technique by eliminating the injected signal in SSTDR. The detection error rates are compared and analyzed in power line channel model with various fault locations, fault types, and spreading sequences such as m-sequence, binary Barker sequence, and 4-phase Frank sequence. It is shown that the proposed technique is able to improve the detection performance obviously when the reflected signal is weak or the fault location is extremely close.