• Title/Summary/Keyword: 오콘

Search Result 5, Processing Time 0.019 seconds

DC vs DC

  • Korea Database Promotion Center
    • Digital Contents
    • /
    • no.6 s.157
    • /
    • pp.75-83
    • /
    • 2006
  • 사람들은 지하철에서 다운로드 받은 모바일게임을 휴대전화로 즐기며, 인터넷에서 방송중인 동영상UCC로 스포츠를 시청하기도 한다. 온라인 속 자신의 또 다른 분신인 아바타 꾸미기에 심혈을 기울이고, 휴대전화 MP3로 좋아하는 음악을 듣는다. 이렇듯 DC는 이제 우리네 일상생활 속에 깊숙이 자리 잡으며 단기간에 국내 중추 산업으로 성장하기에 이르렀다. 이는 수많은 국내 DC 기업들의 도전과 꿈이 있었기에 가능했던 일. 이번 창간 특집 DC vs DC에 서는 때론 경쟁하면서 때론동반자로 DC 산업의 성장을 이끈 업체들을 비교∙분석했다.

  • PDF

A Study on the Pore Pressure Dissipation Test of the Piezocone (피에오콘의 간극수압 소산시험에 관한 연구)

  • 황대진;김철웅
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.25-36
    • /
    • 1997
  • A degree of consolidation at any time can be evaluated by using cone penetration test after soil improvement. In this case, after stopping the penetration of a piezocone, pore pressure dissipation(PPD) best is carried out until the pore pressure remains constant. Since the hydraulic conductivity of soft ground is very small, it takes very long time to finish the PPD test. This research is performed to develop a method overcoming this problem of the PPD test and reducing the test time. The analyses are carried out in the following ways : an equilibrium pore pressure can be determined by using pore pressure measured in the middle of the test, which is predicted by hyperbolic, Asaoka and Hoshino methods. And this equilibrium pore pressure is compared with the one measured in a test of long duration. As a result of the study, it is found that Hoshino method is the best way to predict the equilibrium pore pressure in a teat of short duration. And it is proposed as a methodology to fond a minimal time in which we can get an equilibrium pore pressure.

  • PDF

Carbon Electrodes in Capacitive Deionization Process (정전기적 흡·탈착 공정에서의 탄소 전극)

  • Chung, Sangho;Lee, Jae Kwang;Ocon, Joey D.;Son, Young-Il;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.346-351
    • /
    • 2014
  • With the world population's continuous growth and urban industrialization, capacitive deionization (CDI) has been proposed as a next-generation water treatment technology to augment the supply of water. As a future water treatment method, CDI attracts significant attention because it offers small energy consumption and low environmental impact in comparison to conventional methods. Carbon electrodes, which have large surface area and high conductivity, are mainly used as electrode materials of choice for the removal of ions in water. A variety of carbon materials have been investigated, including their adsorption-desorption behavior in accordance to the specific surface area and pore size distribution. In this review, we analyzed and highlighted these carbon materials and looked at the impact of pore size distribution to the overall CDI efficiency. Finally, we propose an optimal condition in the interplay between micropores and mesopores in order to provide the best electrosorption property for these carbon electrodes.

Performance Analysis of Mobile WiMAX MMR System with Vertical Handover (수직 핸드오버를 통한 Mobile WiMAX MMR system의 성능분석)

  • Bae, Mun-Han;Kim, Young-Il;Kim, Suk-Chan;Lee, Dong-Heon;Otgonbayar, B.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.844-851
    • /
    • 2009
  • Handover is needed in multi-hop relay systems to support mobility. The main purpose of handover is to provide the continuous connection when a MS migrates from the air-interface of one BS to another air-interface provided by another BS. Especially the handover between different systems is essential to next generation network. Vertical Handover technology in Mobile WiMAX MMR system is very useful for operators to introduce to Mobile WiMAX system in an overlaid cell environment. This technology will be applied to technology which hands MRS(Mobile Relay Station) over to different systems for system performance enhancement in Ubiquitous environment overlaid between Micro ce11(Frequency 1,FA1) and Macro cell(Frequency 2,FA2). In this paper, FA1 and FA2 are used in order to perform Vertical Handover of MRS(Mobile Relay Station) according to suggested conditions. interferences from neighboring BS or other sectors of 6 macro cells surrounding center Macro cell are analyzed and throughputs are measured according to suggested conditions.

High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries (다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극)

  • Ocon, Joey D.;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • Lithium ion batteries (LIBs) are the state-of-the-art technology among electrochemical energy storage and conversion cells, and are still considered the most attractive class of battery in the future due to their high specific energy density, high efficiency, and long cycle life. Rapid development of power-hungry commercial electronics and large-scale energy storage applications (e.g. off-peak electrical energy storage), however, requires novel anode materials that have higher energy densities to replace conventional graphite electrodes. Germanium (Ge) and silicon (Si) are thought to be ideal prospect candidates for next generation LIB anodes due to their extremely high theoretical energy capacities. For instance, Ge offers relatively lower volume change during cycling, better Li insertion/extraction kinetics, and higher electronic conductivity than Si. In this focused review, we briefly describe the basic concepts of LIBs and then look at the characteristics of ideal anode materials that can provide greatly improved electrochemical performance, including high capacity, better cycling behavior, and rate capability. We then discuss how, in the future, Ge anode materials (Ge and Ge oxides, Ge-carbon composites, and other Ge-based composites) could increase the capacity of today's Li batteries. In recent years, considerable efforts have been made to fulfill the requirements of excellent anode materials, especially using these materials at the nanoscale. This article shall serve as a handy reference, as well as starting point, for future research related to high capacity LIB anodes, especially based on semiconductor Ge and Si.