Browse > Article
http://dx.doi.org/10.14478/ace.2014.1008

High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries  

Ocon, Joey D. (Electrochemical Reaction and Technology Laboratory (ERTL), School of Environmental Science and Engineering (SESE), Gwangju Institute of Science and Technology (GIST))
Lee, Jae Kwang (Electrochemical Reaction and Technology Laboratory (ERTL), School of Environmental Science and Engineering (SESE), Gwangju Institute of Science and Technology (GIST))
Lee, Jaeyoung (Electrochemical Reaction and Technology Laboratory (ERTL), School of Environmental Science and Engineering (SESE), Gwangju Institute of Science and Technology (GIST))
Publication Information
Applied Chemistry for Engineering / v.25, no.1, 2014 , pp. 1-13 More about this Journal
Abstract
Lithium ion batteries (LIBs) are the state-of-the-art technology among electrochemical energy storage and conversion cells, and are still considered the most attractive class of battery in the future due to their high specific energy density, high efficiency, and long cycle life. Rapid development of power-hungry commercial electronics and large-scale energy storage applications (e.g. off-peak electrical energy storage), however, requires novel anode materials that have higher energy densities to replace conventional graphite electrodes. Germanium (Ge) and silicon (Si) are thought to be ideal prospect candidates for next generation LIB anodes due to their extremely high theoretical energy capacities. For instance, Ge offers relatively lower volume change during cycling, better Li insertion/extraction kinetics, and higher electronic conductivity than Si. In this focused review, we briefly describe the basic concepts of LIBs and then look at the characteristics of ideal anode materials that can provide greatly improved electrochemical performance, including high capacity, better cycling behavior, and rate capability. We then discuss how, in the future, Ge anode materials (Ge and Ge oxides, Ge-carbon composites, and other Ge-based composites) could increase the capacity of today's Li batteries. In recent years, considerable efforts have been made to fulfill the requirements of excellent anode materials, especially using these materials at the nanoscale. This article shall serve as a handy reference, as well as starting point, for future research related to high capacity LIB anodes, especially based on semiconductor Ge and Si.
Keywords
germanium; lithium batteries; high energy density; nanotechnology; lithium alloying;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M.-H. Park, K. Kim, J. Kim, and J. Cho, Flexible dimensional control of high-capacity Li-ion-battery anodes: From 0D hollow to 3D porous germanium nanoparticle assemblies, Adv. Mater., 22, 415-418 (2010).   DOI   ScienceOn
2 L. C. Yang, Q. S. Gao, L. Li, Y. Tang, and Y. P. Wu, Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemicalreaction,Electrochem. Commun., 12, 418-421 (2010).   DOI   ScienceOn
3 A. M. Chockla, K. C. Klavetter, C. B. Mullins, and B. A. Korgel, Solution-grown germanium nanowire anodes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 4, 4658-4664 (2012).   DOI   ScienceOn
4 T. Song, Y. Jeon, M. Samal, H. Han, H. Park, J. Ha, D. K. Yi, J.-M.Choi, H. Chang, Y.-M.Choi, and U. Paik, A Ge inverse opal with porous walls as an anode for lithium ion batteries, Energy Environ. Sci., 5, 9028-9033 (2012).   DOI   ScienceOn
5 C. K. Chan, X. F. Zhang, and Y. Cui, High capacity Li ion battery anodes using Ge nanowires, NanoLett., 8, 307-309 (2011).
6 J. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett, and S. Maldonado, Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage, NanoLett., 12, 4617-4623 (2012).   DOI   ScienceOn
7 X. H. Liu, L. Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J. W. Wang, J.-H. Cho, S. A. Dayeh, S. T. Picraux, J. P. Sullivan, S. X. Mao, Z. Z. Ye, and J. Y. Huang, Ultrafast electrochemical lithiation of individual Si nanowire anodes, NanoLett., 11, 2251-2258 (2011).   DOI   ScienceOn
8 L. Baggetto, E. J. M. Hensen, and P. H. L. Notten, In situ X-ray absorption spectroscopy of germanium evaporated thin film electrodes, Electrochim. Acta, 55, 7074-7079 (2010).   DOI   ScienceOn
9 X. H. Liu, L. Zhong, L. Q. Zhang, A. Kushima, S. X. Mao, J. Li, Z. Z. Ye, J. P. Sullivan, and J. Y. Huang, Lithium fiber growth on the anode in a nanowire lithium ion battery during charging, Appl. Phys. Lett., 98, 183107 (2011).   DOI   ScienceOn
10 M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid State Lett., 7, A93-A96 (2004).   DOI
11 T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151, A838-A842 (2004).   DOI   ScienceOn
12 B. Laforge, L. Levan-Jodin, R. Salot, and A. Billard, Study of germanium as electrode in thin-film battery, J. Electrochem. Soc., 155, A181-A188 (2008).   DOI   ScienceOn
13 L. Baggetto, J. F. M. Oudenhoven, T. van Dongen, J. H. Klootwijk, M. Mulder, R. A. H. Niessen, M. H. J. M. de Croon, and P. H. L. Notten, On the electrochemistry of an anode stack for all-solidstate 3D-integrated batteries, J. Power Sources, 189, 402-410 (2009).   DOI   ScienceOn
14 M.-H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, Germanium nanotubes prepared by using the Kirkendall Effect as anodes for high-rate lithium batteries, Angew. Chem. Int. Ed., 50, 9647- 9650 (2011).   DOI   ScienceOn
15 W. Liang, H. Yang, F. Fan, Y. Liu, X. H. Liu, J. Y. Huang, T. Zhu, and S. Zhang, Tough germanium nanoparticles under electrochemical cycling, ACS Nano, 7, 3427-3433 (2013).   DOI   ScienceOn
16 X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6, 1522-1531 (2012).   DOI   ScienceOn
17 United Nations World Commission on Environment and Development, Our common future [Brundtland Report], Oxford University Press, (1987).
18 U. R. Sumaila, W. W. L. Cheung, V. W. Y. Lam, D. Pauly, and S. Herrick, Climate change impacts on the biophysics and economics of world fisheries, Nat. Clim. Chang., 1, 449-456 (2011).   DOI
19 H. Lee, M. G. Kim, C. H. Choi, Y.-K. Sun, C. S. Yoon, and J. Cho, Surface-stabilized amorphous germanium nanoparticles for lithiumstorage material, J. Phys. Chem. B, 109, 20719-20723 (2005).   DOI
20 H. Nakai, T. Kubota, A. Kita, and A. Kawashima, Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes, J. Electrochem. Soc., 158, A798-A801 (2011).   DOI   ScienceOn
21 G. Boyle, Renewable Energy: Power for a Sustainable Future, 3rd ed., Oxford University Press, USA (2012).
22 B. Dunn, H. Kamath, and J.-M Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334, 928-935 (2011).   DOI   ScienceOn
23 M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104, 4245-4269 (2004).   DOI   ScienceOn
24 J.-M. Tarascon and M. Armand, Issues and challenges facing the rechargeablelithium batteries, Nature, 414, 359-367 (2001).   DOI   ScienceOn
25 A. W. Fairhall, Accumulation of fossil $CO_2$ in the atmosphere and the sea, Nature, 245, 20-23 (1973).   DOI
26 C. Rosenzweig and M. L. Parry, Potential impact of climate change on world food supply, Nature, 367, 133-138 (1994).   DOI   ScienceOn
27 K. T. Lee and J. Cho, Role of nanosize in lithium reactive nanomaterials for lithium ion batteries, Nano Today, 6, 28-41 (2011).   DOI   ScienceOn
28 J. Jiang, Y. Li, J. Liu, and X. Huang, Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes, Nanoscale, 3, 45-58 (2011).   DOI   ScienceOn
29 J. B. Goodenough and K.-S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc., 135, 1167-1176 (2013).   DOI   ScienceOn
30 X.-L. Wu, Y.-G. Guo, and L.-J. Wan, Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries, Chem.-Asian J., 8, 1948-1958 (2013).   DOI   ScienceOn
31 R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T.-M.Lu, P. N. Kumta, and N. Koratkar, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, 5, 2236-2242 (2009).   DOI   ScienceOn
32 N. Nitta and G. Yushin, High-capacity anode materials for lithiumion batteries: Choice of elements and structures for active particles, Part. Part. Syst. Charact., DOI: 10.1002/ppsc.201300231.   DOI   ScienceOn
33 M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries, Chem. Rev., 113, 5364-5457 (2013).   DOI   ScienceOn
34 T. D. Bogard, A. M. Chockla, and B. A. Korgel, High capacity lithium ion battery anodes of silicon and germanium, Curr. Opin. Chem. Eng., 2, 286-293 (2013).   DOI   ScienceOn
35 Q. Zhang, E. Uchaker, S. L. Candelaria, and G. Cao, Nanomaterials for energy conversion and storage, Chem. Soc. Rev., 42, 3127-3171 (2013).   DOI
36 B. M. L. Rao, R. W. Francis, and H. A. Christopher, Lithiumaluminumelectrode, J. Electrochem. Soc., 124, 1490-1492 (1977).   DOI
37 H. Ikeda, T. Saito, H. Tamura, in Proc. Manganese Dioxide Symp. (eds A. Kozawa, R. H. Brodd), IC sample office, Cleveland, OH, 1975, Vol 1.
38 A. Yoshino, The birth of the lithium-ion battery, Angew. Chem. Int. Ed., 51, 5798-5800 (2012).   DOI   ScienceOn
39 M. S. Whittingham, Chalcogenide battery, US Patent 4009052.
40 B. C. H. Steele, Fast ion transport in solids (ed. W. Van Gool), North-Holland Amsterdam, (1973).
41 K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCo$O_2$ (0 < x $\leq$ 1): A new cathode material for batteries of high energy density, Mater. Res. Bull., 15, 783-789 (1980).   DOI   ScienceOn
42 M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Mater. Res. Bull., 18, 461-472 (1983).   DOI   ScienceOn
43 J. B. Goodenough, K. Mizushima, P. J. Wiseman, Electrochemical cell and method of making ion conductors for said cell, EP0017400B1 (1984).
44 M. Lazzari and B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, J. Electrochem. Soc., 127, 773-774 (1980).   DOI
45 W. van Schalkwijk and B. Scrosati, Advances in Lithium-ion batteries, Kluwer Academic/Plenum, Boston, USA (2004).
46 L. Baggetto and P. H. L. Notten, Lithium-ion (de)insertion reaction of germanium thin-film electrodes: An electrochemical and in situ XRD study, J. Electrochem. Soc., 156, A169-A175 (2009).   DOI
47 N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 51, 9994-10024 (2012).   DOI   ScienceOn
48 J. Graetz, C. C. Ahn, R. Yazami, and B. Fultz, Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities, J. Electrochem. Soc., 151, A698-A702 (2004).   DOI   ScienceOn
49 S. Yoon, C.-M. Park, and H.-J. Sohn, Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries, Electrochem. Solid State Lett., 11, A42-A45 (2008).   DOI   ScienceOn
50 X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, and J. Y. Huang, In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures, Adv. Energy Mater., 2, 722-741 (2012).   DOI   ScienceOn
51 X. H. Liu, S. Huang, S. T. Picraux, J. Li, T. Zhu, and J. Y. Huang, Reversible nanopore formation in Ge nanowires during lithiationdelithiation cycling: An in situ transmission electron microscopy study, NanoLett., 11, 3991-3997 (2011).   DOI   ScienceOn
52 X. H. Liu and J. Y. Huang, In situ TEM electrochemistry of anode materials in lithium ion batteries, Energy Environ. Sci., 4, 3844- 3860 (2011).   DOI   ScienceOn
53 C. Yan, W. Xi, W. Si, J. Deng, and O. G. Schmidt, Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability, Adv. Mater., 25, 539-544 (2013).   DOI   ScienceOn
54 X. Liu, J. Zhao, J. Hao, B.-L. Su, and Y. Li, 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties, J. Mater. Chem. A, 1, 1507615081 (2013).
55 Y. J. Cho, H. S. Im, Y. Myung, C. H. Kim, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, S. H. Choo, M. S. Song, and W. I. Cho, Germanium sulfide (II and IV) nanoparticles for enhanced performance of lithium ion batteries, Chem. Commun., 49, 4661-4663 (2013).   DOI   ScienceOn
56 Y. Kim, H. Hwang, K. Lawler, S. W. Martin, and J. Cho, Electrochemical behavior of Ge and Ge$X_2$ (X = O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium, Electrochim. Acta, 53, 5058-5064 (2008).   DOI   ScienceOn
57 C.-M. Hwang and J.-W. Park, Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries, Thin Solid Films, 518, 6590-6597 (2010).   DOI   ScienceOn
58 W. Li, Y.-X. Yin, S. Xin, W.-G. Song, and Y.-G. Guo, Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material, Energy Environ. Sci., 5, 8007-8013 (2012).   DOI   ScienceOn
59 S. Fan, L. Y. Lim, Y. Y. Tay, S. S. Pramana, X. Rui, M. K. Samani, Q. Yan, B. K. Tay, M. F. Toney, and H. H. Hng, Rapid fabrication of a novel Sn-Ge alloy: Structure-property relationship and its enhanced lithium storage properties, J. Mater. Chem. A, 1, 14577-14585 (2013).   DOI   ScienceOn
60 W. Li, X. Wang, B. Liu, S. Luo, Z. Liu, X. Hou, Q. Xiang, D. Chen, and G. Shen, Highly reversible lithium storage in hierarchical $Ca_2Ge_7O_{16}$ nanowire arrays/carbon textile anodes, Chem.- Eur. J., 19, 8650-8656 (2013).   DOI   ScienceOn
61 C.-M. Hwang, and J.-W. Park, Electrochemical characterizations of multi-layer and composite silicon-germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources, 196, 6772-6780 (2011).   DOI   ScienceOn
62 Y. J. Cho, C. H. Kim, H. S. Im, Y. Myung, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, S. H. Lim, E. H. Cha, K. Y. Bae, M. S. Song, and W. I. Cho, Germaniumtin alloy nanocrystals for high-performance lithium ion batteries, Phys. Chem. Chem. Phys., 15, 11691-11695 (2013).   DOI   ScienceOn
63 M.-H. Kim, S.-H. Ahn, and J.-W. Park, Electrochemical characteristics of a Si/Ge multilayer anode for lithium-ion batteries, J. Korean Phys. Soc., 49, 1107-1110 (2006).   과학기술학회마을
64 C.-M. Hwang and J.-W. Park, Electrochemical properties of Si-Ge- Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries, Electrochim. Acta, 56, 6737-6747 (2011).   DOI   ScienceOn
65 T. Song, H. Cheng, H. Choi, J.-H. Lee, H. Han, D. H. Lee, D. S. Yoo, M.-S. Kwon, J.-M. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W. I. Park, Y.-C. Chung, H. Kim, J. A. Rogers, and U. Paik, Si/Ge double-layered nanotube array as a lithium ion battery anode, ACS Nano, 6, 303-309 (2012).   DOI   ScienceOn
66 J. Yu, N. Du, H. Zhang, and D. Yang, Synthesis of NixSiy-SiGe core-shell nanowire arrays on Ni foam as a high-performance anode for Li-ion batteries, RSC Adv., 3, 7713-7717 (2013).   DOI   ScienceOn
67 P. R. Abel, A. M. Chockla, Y.-M. Lin, V. C. Holmberg, J. T. Harris, B. A. Korgel, A. Heller, and C. B. Mullins, Nanostructured $Si_{(1-x)}Ge_x$ for tunable thin film lithium-ion battery anodes, ACS Nano, 7, 2249-2257 (2013).   DOI   ScienceOn
68 Y. Liu, X. H. Liu, B.-M. Nguyen, J. Yoo, J. P. Sullivan, S. T. Picraux, J. Y. Huang, and S. A. Dayeh,Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale, NanoLett., 13, 4876-4883 (2013).   DOI   ScienceOn
69 I. Seo and S. W. Martin, Structural properties of lithium thiogermanate thin film electrolytes grown by radio frequency sputtering, Inorg. Chem., 50, 2143-2150 (2011).   DOI   ScienceOn
70 Q. Johnson, G. S. Smith, and D. Wood, The crystal structure of $Li_{15}Ge_4$, Acta Cryst., 18, 131-132 (1965).   DOI
71 Y. Hwa, C.-M. Park, S. Yoon, and H-J. Sohn, The effect of Cu addition on Ge-based composite anode for Li-ion batteries, Electrochim. Acta, 55, 3324-3329 (2010).   DOI   ScienceOn
72 J. Feng, M. O. Lai, and L. Lu, Lithium storage capability of CuGe$O_3$ nanorods, Mater. Res. Bull., 47, 1693-1696 (2012).   DOI   ScienceOn
73 X. Zhao, C. Wang, D. Wang, H. Hahn, and M. Fichtner, Ge-Cu nanoparticles produced by inert gas condensation and their application as anode material for lithium ion batteries, Electrochem. Commun., 35, 116-119 (2013).   DOI   ScienceOn
74 K. H. Seng, M.-H. Park, Z. P. Guo, H. K. Liu, and J. Cho, Catalytic role of Ge in highly reversible GeO2/Ge/C nanocompositeanode material for lithium batteries, NanoLett., 13, 1230-1236 (2013).   DOI   ScienceOn
75 R. Alcantara, M. Tillard-Charbonnel, L. Spina, C. Belin, and J. L. Tirado, Electrochemical reactions of lithium with $Li_2$ZnGe and $Li_2$ZnSi, Electrochim. Acta, 47, 1115-1120 (2002).   DOI
76 F.-W. Yuan, H.-J. Yang, and H.-Y. Tuan, Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization, ACS Nano, 6, 9932-9942 (2012).   DOI   ScienceOn
77 K. H. Seng, M.-H. Park, Z. P. Guo, H. K. Liu, and J. Cho, Selfassembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery, Angew. Chem., 124, 5755-5759 (2012).   DOI   ScienceOn
78 G. Jo, I. Choi, H. Ahn, and M. J. Park, Binder-free Ge nanoparticles- carbon hybrids for anode materials of advanced lithium batteries with high capacity and rate capability, Chem. Commun., 48, 3987-3989 (2012).   DOI   ScienceOn
79 D.-J. Xue, S. Xin, Y. Yan, K.-C. Jiang, Y.-X. Yin, Y.-G. Guo, and L.-J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 134, 2512-2515 (2012).   DOI   ScienceOn
80 D. Li, K. H. Seng, D. Shi, Z. Chen, H. K. Liu, and Z. Guo, A unique sandwich-structured C/Ge/graphenenanocomposite as an anode material for high power lithium ion batteries, J. Mater. Chem. A, 1, 14115-14121 (2013).   DOI   ScienceOn
81 Y. Xiao, M. Cao, L. Ren, and C. Hu, Hierarchically porous germanium- modified carbon materials with enhanced lithium storage performance, Nanoscale, 4, 7469-7474 (2012).   DOI   ScienceOn
82 R. A. DiLeo, M. J. Ganter, M. N. Thone, M. W. Forney, J. W. Staub, R. E. Rogers, and B. J. Landi, Balanced approach to safety of high capacity silicon-germanium-carbon nanotube free-standing lithium ion battery anodes, Nano Energy, 2, 268-275 (2013).   DOI   ScienceOn
83 R. A. DiLeo, M. J. Ganter, R. P. Raffaelle, and B. J. Landi, Germanium-single-wall carbon nanotube anodes for lithium ion batteries, J. Mater. Res., 25, 1441-1446 (2010).   DOI   ScienceOn
84 R. A. DiLeo, S. Frisco, M. J. Ganter, R. E. Rogers, R. P. Raffaelle, and B. J. Landi, Hybrid germanium nanoparticle-single-wall carbon nanotube free-standing anodes for lithium ion batteries, J. Phys. Chem. C, 115, 22609-22614 (2011).   DOI   ScienceOn
85 S. Li, C. Chen, K. Fu, L. Xue, C. Zhao, S. Zhang, Y. Hu, L. Zhou, and X. Zhang, Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries, Solid State Ion., 254, 17-26 (2014).   DOI   ScienceOn
86 S.-H. Woo, S. J. Choi, J.-H. Park, W.-S. Yoon, S. W. Hwang, and D. Whang, Entangled germanium nanowires and graphite nanofibers for the anode of lithium-ion batteries, J. Electrochem. Soc, 160, A112-A116 (2013).
87 E. Mullane, T. Kennedy, H. Geaney, C. Dickinson, and K. M. Ryan, Synthesis of tin catalyzed silicon and germanium nanowires in a solvent-vapor system and optimization of the seed/nanowire interface for dual lithium cycling, Chem. Mater., 25, 1816-1822 (2013).   DOI   ScienceOn
88 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett., 100, 016602 (2008).   DOI   ScienceOn
89 J. Cheng and J. Du, Facile synthesis of germanium-graphenenano composites and their application as anode materials for lithium ion batteries, Crys. Eng. Comm., 14, 397-400 (2012).   DOI   ScienceOn
90 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008).   DOI   ScienceOn
91 J.-G. Ren, Q.-H. Wu, H. Tang, G. Hong, W. Zhang, and S.-T. Lee, Germanium-graphene composite anode for high-energy lithium batteries with long cycle life, J. Mater. Chem. A, 1, 1821-1826 (2013).   DOI
92 L. Li, K. H. Seng, C. Feng, Z. Chen, H. K. Liu, and Z. Guo, Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties, J. Mater. Chem. A, 1, 7666-7672 (2013).   DOI   ScienceOn
93 A. M. Chockla, M. G. Panthani, V. C. Holmberg, C. M. Hessel, D. K. Reid, T. D. Bogart, J. T. Harris, C. B. Mullins, and B. A. Korgel, Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries, J. Phys. Chem. C, 116, 11917-11923 (2012).   DOI   ScienceOn
94 D. Lv, M. L. Gordin, R. Yi, T. Xu, J. Song, Y.-B. Jiang, D. Choi, and D. Wang, GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization for $Li_2O$ along with improved rate performance, Adv. Funct. Mater., DOI: 10.1002/adfm.201301882.   DOI   ScienceOn
95 Z. Chen, Y. Yan, S. Xin, W. Li, J. Qu, W.-G. Guo, and W.-G. Song, Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries, J. Mater. Chem. A, 1, 11404-11409 (2013).   DOI   ScienceOn
96 Y. J. Cho, H. S. Im, H. S. Kim, Y. Myung, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, W. I. Cho, F. Shojaei, and H. S. Kang, Tetragonal phase germanium nanocrystals in lithium ion batteries, ACS Nano, 7, 9075-9084 (2013).   DOI   ScienceOn
97 C. Wang, J. Ju, Y. Yang, Y. Tang, J. Lin, Z. Shi, R. P. S. Han, and F. Huang, In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties, J. Mater. Chem. A, 1, 8897-8902 (2013).   DOI   ScienceOn
98 S. Jin, N. Li, H. Cui, and C. Wang, Growth of the vertically aligned graphene@amorphousGeOx sandwich nanoflakes and excellent Li storage properties, Nano Energy, 2, 1128-1136 (2013).   DOI   ScienceOn
99 H. Yin, J. Luo, P. Yang, and P. Yin, Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles and their electrical property testing, Nanoscale Res. Lett., 8, 422 (2013).   DOI   ScienceOn
100 Y.-M. Lin, K. C. Klavetter, A. Heller, and C. Buddie Mullins, Storage of lithium in hydrothermally synthesized GeO2 nanoparticles, J. Phys. Chem. Lett., 4, 999-1004 (2013).   DOI   ScienceOn
101 Y. Son, M. Park, Y. Son, J.-S.Lee, J.-H. Jang, Y. Kim, and J. Cho, Quantum confinement and its related effects on the critical size of Ge$O_2$ nanoparticles anodes for lithium batteries, NanoLett., DOI:10.1021/nl404466v.   DOI   ScienceOn
102 N. G. Rudawski, B. L. Darby, B. R. Yates, K. S. Jones, R. G. Elliman, and A. A. Volinsky, Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes, Appl. Phys. Lett., 100, 083111 (2012).   DOI   ScienceOn
103 N. G. Rudawski, B. R. Yates, M. R. Holzworth, K. S. Jones, R. G. Elliman, and A. A. Volinsky, Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries, J. Power Sources, 223, 336-340 (2013).   DOI   ScienceOn
104 X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, J.-H. Cho, E. Epstein, S. A. Dayeh, S. T. Picraux, T. Zhu, J. Li, J. P. Sullivan, J. Cumings, C. Wang, S. X. Mao, Z. Z. Ye, S. Zhang, and J. Y. Huang, Anisotrophic swelling and fracture of silicon nanowires during lithiation, NanoLett., 11, 3312-3318 (2011).   DOI   ScienceOn
105 C. H. Kim, Y. S. Jung, K. T. Lee, J. H. Ku, and S. M. Oh, The role ofin situ generatednano-sized metal particles on the coulombic efficiency of MGe$O_3$ (M = Cu, Fe, and Co) electrodes, Electrochim. Acta, 54, 4371-4377 (2009).   DOI   ScienceOn
106 J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, Cu-$Si_{1-x}Ge_x$ core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Power Sources, 208, 434-439 (2012).   DOI   ScienceOn
107 L. P. Tan, Z. Li, H. T. Tan, J. Zhu, X. Rui, Q. Yan, andH. H. Hng, Germanium nanowires-based carbon composite as anodes for lithium-ion batteries, J. Power Sources, 206, 253-258 (2012).   DOI   ScienceOn
108 C. H. Kim, H. S. Im, Y. J. Cho, C. S. Jung, D. M. Jang, Y. Myung, H. S. Kim, S. H. Back, Y. R. Lim, C.-W. Lee, and J. Park, Highyield gas-phase photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries, J. Phys. Chem. C, 116, 26190-26196 (2012).   DOI   ScienceOn
109 V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir, 28, 6175-6184 (2012).   DOI   ScienceOn
110 K. C. Klavetter, S. M. Wood, Y.-M. Lin, J. L. Snider, N. C. Davy, A. M. Chockla, D. K. Romanovicz, B. A. Korgel, J.-W. Lee, A. Heller, and C. B. Mullins, A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life, J. Power Sources, 238, 123-136 (2013).   DOI   ScienceOn
111 X.-L. Wang, W.-Q. Han, H. Chen, J. Bai, T. A. Tyson, X.-Q. Yu, X.-J. Wang, and X.-Q. Yang, Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life, J. Am. Chem. Soc., 133, 20692-20695 (2011).   DOI   ScienceOn
112 N. Zhao, L. Fu, L. Yang, T. Zhang, G. Wang, Y. Wu, and T. van Ree, Nanostructured anode materials for Li-ion batteries, Pure Appl. Chem., 80, 2283-2295 (2008).
113 D. W. Murphy, F. J. DiSalvo, J. N. Carides, and J. V. Waszczak, Topochemical reactions of rutile related structures with lithium, Mater. Res. Bull., 13, 1395-1402 (1978).   DOI   ScienceOn
114 J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, Cu-Ge core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Mater. Chem., 22, 1511-1515 (2012).   DOI   ScienceOn
115 B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2, 638-654 (2009).   DOI   ScienceOn