• Title/Summary/Keyword: 오차 예측

Search Result 2,528, Processing Time 0.031 seconds

Comparison between Kriging and GWR for the Spatial Data (공간자료에 대한 지리적 가중회귀 모형과 크리깅의 비교)

  • Kim Sun-Woo;Jeong Ae-Ran;Lee Sung-Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.271-280
    • /
    • 2005
  • Kriging methods as traditional spatial data analysis methods and geographical weighted regression models as statistical analysis methods are compared. In this paper, we apply data from the Ministry of Environment to spatial analysis for practical study. We compare these methods to performance with monthly carbon monoxide observations taken at 116 measuring area of air pollution in 1999.

Forecasts of electricity consumption in an industry building (광, 공업용 건물의 전기 사용량에 대한 시계열 분석)

  • Kim, Minah;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.189-204
    • /
    • 2018
  • This study is on forecasting the electricity consumption of an industrial manufacturing building called GGM from January 2014 to April 2017. We fitted models using SARIMA, SARIMA + GARCH, Holt-Winters method and ARIMA with Fourier transformation. We also forecasted electricity consumption for one month ahead and compared the predicted root mean square error as well as the predicted error rate of each model. The electricity consumption of GGM fluctuates weekly and annually; therefore, SARIMA + GARCH model considering both volatility and seasonality, shows the best fit and prediction.

Permeability Prediction of Rock Mass Using the Artifical Neural Networks (인공신경 망을 이용한 암반의 투수계수 예측)

  • Lee, In-Mo;Jo, Gye-Chun;Lee, Jeong-Hak
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.77-90
    • /
    • 1997
  • A resonable and economical method which can predict permeability of rock mass in underground is needed to overcome the uncertainty of groundwater behavior. For this par pose, one prediction method of permeability has been studied. The artificial neural networks model using error back propagation algorithm, . one of the teaching techniques, is utilized for this purpose. In order to verify the applicability of this model, in-situ permeability results are simulated. The simulation results show the potentiality of utilizing the neural networks for effective permeability prediction of rock mass.

  • PDF

On Prediction Intervals for Binomial Data (이항자료에 대한 예측구간)

  • Ryu, Jea-Bok
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.943-952
    • /
    • 2013
  • Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.

인공 신경망과 서포트 벡터 머신을 사용한 태양 양성자 플럭스 예보

  • Nam, Ji-Seon;Mun, Yong-Jae;Lee, Jin-Lee;Ji, Eun-Yeong;Park, Jin-Hye;Park, Jong-Yeop
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.129.1-129.1
    • /
    • 2012
  • 서포트 벡터 머신(Support Vector Machine, SVM)과 인공신경망 모형(Neural Network, NN)을 사용하여 태양 양성자 현상(Solar proton event, SPE)의 플럭스 세기를 예측해 보았다. 이번 연구에서는 1976년부터 2011년까지 10MeV이상의 에너지를 가진 입자가 10개 cm-1 sec-1 ster -1 이상 입사할 경우를 태양 양성자 현상으로 정의한 NOAA의 태양 고에너지 입자 리스트와 GOE위성의 X-ray 플레어 데이터를 사용하였다. 여기에서 C, M, X 등급의 플레어와 관련있는 178개 이벤트를 모델의 훈련을 위한 데이터(training data) 89개와 예측을 위한 데이터(prediction data) 89개로 구분하였다. 플러스 세기의 예측을 위하여, 우리는 로그 플레어 세기, 플레어 발생위치, Rise time(플레어 시작시간부터 최대값까지의 시간)을 모델 입력인자로 사용하였다. 그 결과 예측된 로그 플럭스 세기와 관측된 로그 플럭스 세기 사이의 상관계수는 SVM과 NN에서 각각 0.32와 0.39의 값을 얻었다. 또한 두 값 사이의 평균 제곱근 오차(Root mean square error)는 SVM에서 1.17, NN에서는 0.82로 나왔다. 예측된 플럭스 세기와 관측된 플럭스 세기의 차이를 계산해 본 결과, 오차 범위가 1이하인 경우가 SVM에서는 약 68%이고 NN에서는 약 80%의 분포를 보였다. 이러한 결과로부터 우리는 NN모델이 SVM모델보다 플럭스 세기를 잘 예측하는 것을 알 수 있었다.

  • PDF

Orbit Prediction using Broadcast Ephemeris for GLONASS Satellite Visibility Analysis (GLONASS 위성 가시성 분석을 위한 방송궤도력 기반 궤도 예측)

  • Kim, Hye-In;Park, Kwan-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.199-210
    • /
    • 2009
  • Even though there are several Global Navigation Satellite Systems under development, only GPS and GLONASS are currently available for satellite positioning. In this study, GLONASS orbits were predicted from broadcast ephemeris using the 4th-order Runge-Kutta numerical integration. For accuracy validation, predicted orbits were compared with precise ephemeris. The RMS(Root Mean Square) and maximum 3-D errors were 14.3 km and 17.4 km for one-day predictions. In case of 7-day predictions, the RMS and maximum 3-D errors were 15.7 and 40.1 km, respectively. Also, the GLONASS satellite visibility predictions were compared with real observations, and they agree perfectly except for several epochs when the satellite signal was blocked by nearby buildings.

On prediction intervals for binomial data (이항자료에 대한 예측구간)

  • Ryu, Jea-Bok
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.579-588
    • /
    • 2021
  • Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.

Improving the Performance of Supervised Learning Models using Error Pattern Modeling (오차패턴 모델링을 이용한 지도학습 모형에서의 성능 향상)

  • Heo, Jun;Kim, Jong-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.280-286
    • /
    • 2005
  • 본 논문은 이분형 목적변수를 가지는 데이터에서, 의사결정나무나 신경망과 같은 지도 학습(Supervised Learning)의 훈련을 통한 각종 예측 및 분류 정확도를 향상시키기 위해서 오차 패턴을 이용한 새로운 Hybrid 데이터 마이닝 기법을 제안한다. 오차 패턴을 이용한 Hybrid 기법이란 데이터 마이닝의 서로 다른 기법을 각 데이터에 적용한 다음 기법간의 불일치되는 부분만을 다시 패턴화 하여, 이를 최종 모형에 적용하여, 기존에 1개의 방법만을 사용하였을 경우보다, 더욱 좋은 정확도를 가질 수 있도록 하는 방법이다. 본 기법의 검증을 위하여, 10개의 실제 검증용 자료를 사용하였으며, 분석 결과 신경망과 의사결정나무 분석과 같은 기존의 방법보다 전체적으로 예측력이 향상됨을 보였다.

  • PDF

확률적(確率的) 변동성하(變動性下)의 통화(通貨)옵션가격결정모형(價格決定模型)의 실증분석(實證分析)

  • Park, Byeong-Su
    • The Korean Journal of Financial Studies
    • /
    • v.3 no.1
    • /
    • pp.329-357
    • /
    • 1996
  • 본 논문은 확률적 변동성하의 통화옵션가격결정모형에 대하여 실증적으로 검증하였다. 연구결과 OTM, ATM, ITM에서 일정한 변동성을 가정하는 모형가격은 확률적 변동성하의 통화옵션가격결정모형에 비교하여 일치적으로 높게 나타나고 있으며 OTM옵션에 가격결정오차의 크기는 ATM 옵션보다 크게 나타나고 있다. 또한 옵션의 만기가 길수록 가격결정오차의 크기는 커진다는 것을 보여주고 있다. 확률적 변동성하의 통화옵션가격결정모형이 일정한 변동성을 가정하는 통화옵션가격결정모형보다 행사가격과 만기편의를 감소시키며 특히 단기의 만기를 가진 범위에서는 매우 큰 오차감소효과가 나타났다. 따라서 통화옵션가격결정모형을 이용하여 옵션가격을 예측함에 있어 환율변동성이 일정하다는 가정하에서 변동성을 모형에 투입하는 것보다는 환율변동성의 이분산성을 고려하여 추정된 변동성을 모형에 투입하는 것이 통화옵션가격의 예측력을 개선시킬 수 있다고 할 수 있다. 그리고 회귀분석결과 설명력을 나타내는 $R^2$값이 높게 나타나고 있으며, 확률적 변동성하의 통화옵션가격결정모형의 $R^2$값이 일정한 변동성을 가정하는 모형의 $R^2$보다는 높게 나타나고 있다.

  • PDF

Sensorless Control of BLDC Motor Using Novel RPEPA (새로운 회전자 위치 오차예측 알고리즘을 이용한 BLDC 전동기의 센서리스 제어)

  • Park, Hyung-Joon;Jang, Jae-Hoon;Kim, Jong-Sun;Lee, Sang-Bin;Yoo, Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.224-226
    • /
    • 2005
  • 본 논문에서는 새로운 회전자 위치 오차 예측 알고리즘(RPEPA)를 이용한 BLDC 전동기의 센서리스 제어 방법을 제안한다. 회전자 위치 정보는 3상 단자 전압으로부터 간접적인 Back-EMF 검출에 의해 추정되고, 저역통과 필터는 스위칭 노이즈 제거를 위해 사용된다. 제안한 방법은 저속 영역에서 기존 방법들 보다 향상된 성능을 갖고 있다. 필터에 의해 발생되는 위상 오차는 새로운 RPEPA에 의해 실시간 보상되어 정확한 전환시점을 결정한다. RPEPA를 이용한 센서리스 방법은 넓은 속도범위와 전동기의 효율을 개선시킨다. 제안한 방법은 실험을 통하여 타당성과 효율성을 검증한다.

  • PDF