• Title/Summary/Keyword: 오차

Search Result 15,940, Processing Time 0.038 seconds

Comparison between Solar Radiation Estimates Based on GK-2A and Himawari 8 Satellite and Observed Solar Radiation at Synoptic Weather Stations (천리안 2A호와 히마와리 8호 기반 일사량 추정값과 종관기상관측망 일사량 관측값 간의 비교)

  • Dae Gyoon Kang;Young Sang Joh;Shinwoo Hyun;Kwang Soo Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.28-36
    • /
    • 2023
  • Solar radiation that is measured at relatively small number of weather stations is one of key inputs to crop models for estimation of crop productivity. Solar radiation products derived from GK-2A and Himawari 8 satellite data have become available, which would allow for preparation of input data to crop models, especially for assessment of crop productivity under an agrivoltaic system where crop and power can be produced at the same time. The objective of this study was to compare the degree of agreement between the solar radiation products obtained from those satellite data. The sub hourly products for solar radiation were collected to prepare their daily summary for the period from May to October in 2020 during which both satellite products for solar radiation were available. Root mean square error (RMSE) and its normalized error (NRMSE) were determined for daily sum of solar radiation. The cumulative values of solar radiation for the study period were also compared to represent the impact of the errors for those products on crop growth simulations. It was found that the data product from the Himawari 8 satellite tended to have smaller values of RMSE and NRMSE than that from the GK-2A satellite. The Himawari 8 satellite product had smaller errors at a large number of weather stations when the cumulative solar radiation was compared with the measurements. This suggests that the use of Himawari 8 satellite products would cause less uncertainty than that of GK2-A products for estimation of crop yield. This merits further studies to apply the Himawari 8 satellites to estimation of solar power generation as well as crop yield under an agrivoltaic system.

A Study on the Policy Proposal for the Expansion of Design Utilization in the Public Sector : Focused on the Case of the National Design Group (공공분야 디자인 활용 확대를 위한 정책제안 연구: 국민디자인단 사례를 중심으로)

  • Bang, Songhee;Kim, Taewan
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.160-171
    • /
    • 2023
  • The importance of design utilization as a method for establishing policies and services in the public sector is increasing. Accordingly, Korea has introduced a public service design development method and has implemented and operated a national design group for consumer-centered policy development since 2014. This study analyzes the cases of the National Design Group to expand the use of design in the public sector and propose sustainable public service design strategies. The time range of this study is from 2014 to 2021, when the National Design Group was implemented, and the content is limited to tasks that can be found on the Gwanghwamun 1st Street website and the National Design Group casebook. This study was conducted as follows. First, we looked for implications for how to use and identify the role of design in the public policy development stage by referring to the literature on design policy and public service design, and second, based on major implications, we analyzed the task name and contents. Based on literature studies and case studies, we found implications that design can be used in various public fields, and the policy implications proposed to expand the use of sustainable design in the public sector are as follows. First, by raising awareness of service design in public policies and services, it continues to provide opportunities for the use of design to expand as a role that leads to voluntary behavioral changes of citizens beyond civic participation. Second, more active publicity is needed for the successful cases of the National Design Group, a product of the active use of public service design. Third, a more specific evaluation system should be introduced to verify the effectiveness and effectiveness of public service design. Through this, it is expected that it will greatly contribute to reducing the error in policy delivery and realizing citizen-centered public services by utilizing design for various problems facing our society.

Evaluation of Spectral Band Adjustment Factor Applicability for Near Infrared Channel of Sentinel-2A Using Landsat-8 (Landsat-8을 활용한 Sentinel-2A Near Infrared 채널의 Spectral Band Adjustment Factor 적용성 평가)

  • Nayeon Kim;Noh-hun Seong;Daeseong Jung;Suyoung Sim;Jongho Woo;Sungwon Choi;Sungwoo Park;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.363-370
    • /
    • 2023
  • Various earth observation satellites need to provide accurate and high-quality data after launch. To maintain and enhance the quality of satellite data, it is crucial to employ a cross-calibration process that accounts for differences in sensor characteristics, such as the spectral band adjustment factor (SBAF). In this study, we utilized Landsat-8 and Sentinel-2A satellite imagery collected from desert sites in Libya4, Algeria3, and Mauritania2 among pseudo-invariant calibration sites to calculate and apply SBAF, thereby compensating the uncertainties arising from variations in bandwidths. We quantitatively compared the reflectance differences based on the similarity of bandwidths, including Blue, Green, Red, and both the near-infrared (NIR) narrow, and NIR bands of Sentinel-2A. Following the application of SBAF, significant results with reflectance differences of approximately 1% or less were observed for all bands except NIR. In the case of the Sentinel-2A NIR band, it exhibited a significantly larger bandwidth difference compared to the NIR narrow band. However, after applying SBAF, the reflectance difference fell within the acceptable error range (5%) of 1-2%. It indicates that SBAF can be applied even when there is a substantial difference in the bandwidths of the two sensors, particularly in situations where satellite utilization is limited. Therefore, it was determined that SBAF could be applied even when the bandwidth difference between the two sensors is large in a situation where satellite utilization is limited. It is expected to be helpful in research utilizing the quality and continuity of satellite data.

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

Development of cordycepin fortified milk production in Holstein cows II. Effects of long-term supply of Cordyceps militaris mycelia on cordycepin content in milk in dairy cows (Cordycepin 강화 우유 생산에 관한 연구 II. 장기간 동충하초 균사체급여가 우유 중의 cordycepin 함량 변화에 미치는 영향)

  • Yeo, J.M.;Lee, S.H.;Kim, D.H.;Hwang, J.H.;Kim, W.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.11 no.1
    • /
    • pp.113-123
    • /
    • 2009
  • This study was carried out to determine effects of long-term supply of Cordyceps militaris mycelia on cordycepin content in milk in dairy cows. Ten Holstein cows in the early stages of lactation were divided into two groups. Control group received no supplement whereas treatment group received 6% of C. militaris mycelia of their dry matter intake for 6 months. Feed intake, milk urea nitrogen and somatic cell counts were not affected by long-term supply of C. militaris mycelia for the whole period. In addition, milk yield and milk composition were not affected by long-term supply of C. militaris mycelia at any time of the periods with the exception of milk protein content and yield. The average of milk protein content and yield from the whole period was higher for C. militaris mycelia supplement group than for the control group. As expected, cordycepin in whole blood and milk was not detected in the control group. The range of cordycepin content in the treatment was 0.31~0.38µ/ml and 0.18~0.26(µ/ml for whole blood and milk, respectively. Individual variation was found to be very high and, furthermore cordycepin was undetected in some milk samples. Thus, no clear pattern could be seen in cordycepin content in milk throughout the whole period. Overall, the results of the present study suggest that the transfer efficiency of cordycepin to milk by supplementing C. militaris mycelia in dairy cows was unpredictable and low.

SHRIMP Zircon U-Pb Age and Geochemistry of Igneous Rocks in the Ssangyong and Yongchu Valleys and Mungyeong Saejae Geosites, Mungyeong Geopark (문경지질공원 쌍룡계곡, 용추계곡, 문경새재 지질명소 화성암류의 SHRIMP 저어콘 U-Pb 연령과 지구화학)

  • Wonseok Cheong;Yoonsup Kim;Giun Han;Taehwan Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.73-94
    • /
    • 2023
  • We carried out the sensitive high resolution ion microprobe (SHRIMP) zircon U-Pb age dating and whole-rock geochemical analysis of granitoids and felsic porphyries in the Ssangyong Valley, Yongchu Valley, and Mungyeong Saejae geosites in the Mungyeong Geopark. The igneous rocks crop out in the western, northwestern and central parts of the Mungyeong city area, respectively, and intruded (meta)sedimentary successions of the Ogcheon Metamorphic Belt, Cambro-Ordovician Mungyeong Group and Jurrasic Daedong Group. The U-Pb isotopic compositions of zircon from two felsic porphyries and one granite samples in the Ssanyeong Valley yielded the Cretaceous intrusion ages of 93.9±3.3 Ma (tσ), 95.1±4.0 Ma (tσ) and 94.4±2.0 Ma (tσ), respectively. On the other hand, a felsic dike sample and a granite in the Yongchu Valley and a porphyritic granite in the Mungyeong Saejae had intrusion ages of 90.2±2.0 Ma (tσ), 91.0±3.0 Ma (tσ) and 88.6±1.5 Ma (tσ), respectively. Based on the average standard error calculated in combination with results of previous studies in this area (Lee et al., 2010; Yi et al., 2014; Aum et al., 2019), the geochronological results show that spatial variation in intrusion age of ~5 Myr between the Ssangyong (94.5±0.2 Ma) and Yongchu Valleys (89.7±0.4 Ma) is apparent. The geochemical compositions of major and trace elements in the samples showed an affinity of typical post-orogenic granite, indicating their petrogenesis during the late stage of Early Cretaceous magmatic activity possibly in association with subduction events of the Izanagi Plate.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

Development of control system for complex microbial incubator (복합 미생물 배양기의 제어시스템 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • In this paper, a control system for a complex microbial incubator was proposed. The proposed control system consists of a control unit, a communication unit, a power supply unit, and a control system of the complex microbial incubator. The controller of the complex microbial incubator is designed and manufactured to convert analog signals and digital signals, and control signals of sensors such as displays using LCD panels, water level sensors, temperature sensors, and pH concentration sensors. The water level sensor used is designed and manufactured to enable accurate water level measurement by using the IR laser method with excellent linearity in order to solve the problem that existing water level sensors are difficult to measure due to foreign substances such as bubbles. The temperature sensor is designed and used so that it has high accuracy and no cumulative resistance error by measuring using the thermal resistance principle. The communication unit consists of two LAN ports and one RS-232 port, and is designed and manufactured to transmit signals such as LCD panel, PCT panel, and load cell controller used in the complex microbial incubator to the control unit. The power supply unit is designed and manufactured to supply power by configuring it with three voltage supply terminals such as 24V, 12V and 5V so that the control unit and communication unit can operate smoothly. The control system of the complex microbial incubator uses PLC to control sensor values such as pH concentration sensor, temperature sensor, and water level sensor, and the operation of circulation pump, circulation valve, rotary pump, and inverter load cell used for cultivation. In order to evaluate the performance of the control system of the proposed complex microbial incubator, the result of the experiment conducted by the accredited certification body showed that the range of water level measurement sensitivity was -0.41mm~1.59mm, and the range of change in water temperature was ±0.41℃, which is currently commercially available. It was confirmed that the product operates with better performance than the performance of the products. Therefore, the effectiveness of the control system of the complex microbial incubator proposed in this paper was demonstrated.

A Method of Reproducing the CCT of Natural Light using the Minimum Spectral Power Distribution for each Light Source of LED Lighting (LED 조명의 광원별 최소 분광분포를 사용하여 자연광 색온도를 재현하는 방법)

  • Yang-Soo Kim;Seung-Taek Oh;Jae-Hyun Lim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.19-26
    • /
    • 2023
  • Humans have adapted and evolved to natural light. However, as humans stay in indoor longer in modern times, the problem of biorhythm disturbance has been induced. To solve this problem, research is being conducted on lighting that reproduces the correlated color temperature(CCT) of natural light that varies from sunrise to sunset. In order to reproduce the CCT of natural light, multiple LED light sources with different CCTs are used to produce lighting, and then a control index DB is constructed by measuring and collecting the light characteristics of the combination of input currents for each light source in hundreds to thousands of steps, and then using it to control the lighting through the light characteristic matching method. The problem with this control method is that the more detailed the steps of the combination of input currents, the more time and economic costs are incurred. In this paper, an LED lighting control method that applies interpolation and combination calculation based on the minimum spectral power distribution information for each light source is proposed to reproduce the CCT of natural light. First, five minimum SPD information for each channel was measured and collected for the LED lighting, which consisted of light source channels with different CCTs and implemented input current control function of a 256-steps for each channel. Interpolation calculation was performed to generate SPD of 256 steps for each channel for the minimum SPD information, and SPD for all control combinations of LED lighting was generated through combination calculation of SPD for each channel. Illuminance and CCT were calculated through the generated SPD, a control index DB was constructed, and the CCT of natural light was reproduced through a matching technique. In the performance evaluation, the CCT for natural light was provided within the range of an average error rate of 0.18% while meeting the recommended indoor illumination standard.

Development of Carbon Emission Factors and Biomass Allometric Equations for Metasequoia glyptostroboides and Platanus occidentalis in Urban Forests (정주지의 메타세쿼이아와 양버즘나무의 탄소 배출 계수 및 바이오매스 상대생장식 개발)

  • Jun-Young Jung;Subin Im;Hyun-Jun Kim;Kye-Han Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • This study aimed to develop biomass allometric equations and estimate carbon emission factors, such as the wood density, biomass-expansion factor, and root-to-shoot ratio, for Platanus occidentalis and Metasequoia glyptostroboides planted in urban areas. Twenty M. glyptostroboides and 25 P. occidentalis trees were harvested, and the dry weights and stem volumes of stems, branches, leaves, and roots (>5 mm) were measured. The wood densities of M. glyptostroboides and P. occidentalis were 0.293 ± 0.008 g cm-3 and 0.509 ± 0.018 g cm-3, and the biomass-expansion factors were 1.738 ± 0.031 and 1.561 ± 0.035. The root-to-shoot ratios were 0.446 ± 0.009 and 0.402 ± 0.012. The uncertainty tests (coefficient of variation, %) gave 2.8% and 3.5% values for wood density, 1.8% and 2.3% for biomass-expansion factor, and 2.1% and 2.9% for root-to-shoot ratio, respectively. Among the developed allometric equations, Model I using the diameter at breast height (DBH) was suitable. The allometric equations of M. glyptostroboides and P. occidentalis above ground were y = 1.679 (DBH)1.315 and y = 0.505 (DBH)1.896, and the allometric equations of the root and total were y = 0.746 (DBH)1.315, y = 0.301 (DBH)1.751, y = 2.422 (DBH)1.316, and y = 0.787 (DBH)1.858. If the carbon-emission factors of this study and biomass allometric equations of the three developed models are used to estimate the carbon storage and biomass of urban forests, errors caused by not considering the use of fixed factors and the environmental differences can be reduced.