본 논문은 특수일 전력 수요 예측을 위해 온도 효과를 고려한 데이터 추출법을 이용하여 특수일 전력 수용 예측 오차율을 감소시키는 방법을 제시한다. 제안된 기법의 타당성을 확인하기 위해 논문에서는 통계학에서 사용되는 결정계수를 이용한다. 결정계수를 이용하여 온도효과의 고려 여부가 오차율에 미치는 영향을 분석하였다. 또한 제안된 기법은 1996년 특수일 오차율을 기존 논문의 결과와 비교 분석하여 기존 방식 대비 특수일 전력 수요예측 관련 우수성을 보였으며, 최근 데이터인 2006년 특수일 전력 수요 예측을 통하여 검증하였다.
본 논문은 한국어 음성 인식을 위한 유성음, 무성음, 묵음 식별에 관한 연구이다. 주어진 음성 구간을 3가지 음성 신호 부류로 식별하기 위하여 패턴 인식 방법을 사용하였다. 여기에 사용한 분석 파 라메타는 음성 신호의 영교차율, 대수 에너지, 정규화 된 첫 번째 자동 상관 계수, 선형 예측 분석에서 얻은 첫 번째 예측 계수, 그리고 예측 오차의 에너지이다. 한편 측정된 파라메타들이 다차원 가우스 확 률 밀도 함수에 따라 분산되었다는 가정하에서 어어진 최소 거리 법칙에 기본을 두고 음성 구간을 결정 하였다. 측정된 파라메타들을 여러 가지 방법으로 조합하여 식별한 결과 영교차율, 첫 번째 예측계수, 예측 오차의 에너지를 측정 파라메타로 사용했을 때 1%보다 적은 식별 오차율을 얻었다.
This study was conducted to determine the effect of the homogenizing grade of sample on absorbance of near infrared reflectance spectrophotometer with which chemical compositions of food were rapidly and effectively analyzed. By the mathematical treatment of absorbance values standard error of prediction was reduced as follows. 1. The absorbance values of various samples ground for the same periods of time were calibrated before or after treatment with first or second derivative in an attempt to accurately predict the components of samples ground for the different periods of time. The standard error of prediction for moisture content were 1.478%, 0.658% and 0.580%, respectively, those for fat content 0.949%, 0.637% and 0.527%, respectively, and those for protein content 0.514%, 0.493% and 0.394%, respectively. Calibration of absorbance values after second derivative treatment showed the highest accuracy in predicting sample components. 2. The absorbance values of various samples ground for the different periods of time were calibrated before or after treatment with first or second derivative in order to accurately predict the components of samples ground for the different periods of time. The standard error of prediction for moisture content were 1.026%, 0.589% and 0.568%, respectively, and those for protein content 0.860%, 0.557% and 0.399%, respectively. The standard error of prediction were lower in the order of calibrations before and after first and second derivative treatments. As a result, calibration of absorbance values after second derivative treatment showed higher accuracy regardless of grinding time of samples.
This paper analyzes the forecasting errors of traffic volumes by comparing forecasted volumes for the opening year with the observed ones in the years after the urban railway construction in the metropolitan areas. The result shows that the average inaccuracy of traffic volumes for each station was estimated at around 7.27. Based on the confirmed factors of demand estimation errors, this study seeks for an alternative method to reduce estimation errors in feasibility studies. It is noted that there is a tendency that the inaccuracy varies by regions and the longer construction period or the shorter station spacing is, the overestimation increases. If urban railway projects are proceeded as planed, therefore, the level of the inaccuracy for traffic volume forecast will be decreased. In addition, thanks to the theoretical progress, recent estimation results show higher accuracy than before. In that sense, when we introduce the new railway line, it is necessary to make an accurate and realistic demand forecast based on actual outcomes and tendency of the previous estimation. The limitation of our study is that we only cover the errors of the initial period, the opening year and deal with the exogenous variables. Further research including other variables which might be considered to cause overestimation or errors would be needed for increasing the estimation accuracy of traffic volumes.
Orbit error analysis was performed for the GPS navigation solutions and ground station tracking data of the KOMPSAT (Korea Multi-Purpose SATellite), which will be launched in 1999 for cartography of Korean peninsula as main mission. A least square method was used for the orbit determination and prediction error simulation including tracking data noises and dynamic modeling errors. It was found that a short-term periodic orbit determination error was caused by the tracking data noise and dominant orbit prediction error was caused by solar flux uncertainty.
The aim of this paper is to forecast passenger numbers and freight volumes in 2005 and it is proposed optimal tonnage of passenger ship. The forecasting of passenger numbers and freight volumes is important problem in order to determine optimal tonnage of passenger ship, port plan and development. In this paper, the forecasting of passenger numbers and freight volumes are performed by the method of neural network using back-propagation learning algorithm. And this paper compares the forecasting performance of neural networks with moving average method and exponential smooth method As the result of analysis. The forecasting of passenger numbers and freight volumes is that the neural networks performed better than moving average method and exponential smoothing method on the basis of MSE(mean square error) and MAE(mean absolute error).
Kim, Hera;Son, Seok-Woo;Song, Kanghyun;Kim, Sang-Wook;Kang, Hyun-Suk;Hyun, Yu-Kyung
Journal of the Korean earth science society
/
v.39
no.3
/
pp.211-227
/
2018
This study evaluates the prediction skills of stratospheric polar vortex intensification events (VIEs) in Global Seasonal Forecasting System (GloSea5) model, an operational subseasonal-to-seasonal (S2S) prediction model of Korea Meteorological Administration (KMA). The results show that the prediction limits of VIEs, diagnosed with anomaly correlation coefficient (ACC) and mean squared skill score (MSSS), are 13.6 days and 18.5 days, respectively. These prediction limits are mainly determined by the eddy error, especially the large-scale eddy phase error from the eddies with the zonal wavenumber 1. This might imply that better prediction skills for VIEs can be obtained by improving the model performance in simulating the phase of planetary scale eddy. The stratospheric prediction skills, on the other hand, tend to not affect the tropospheric prediction skills in the analyzed cases. This result may indicate that stratosphere-troposphere dynamic coupling associated with VIEs might not be well predicted by GloSea5 model. However, it is possible that the coupling process, even if well predicted by the model, cannot be recognized by monotonic analyses, because intrinsic modes in the troposphere often have larger variability compared to the stratospheric impact.
전력수요는 여러 가지 사회, 경제, 기상 등의 복합적인 요인에 의해 결정되므로 예측하기 쉽지 않다. 수요 예측 시스템을 통해 예측된 결과는 예측일의 상황에 맞는 여러 가지 예측과 관련된 변동 요인의 적용범위가 수치적으로 달라 질 수 있어 예측 데이터와 실제 수요와의 오차율이 높아질 수 있다. 따라서 전력수요 실적과 예측간 오차에 영향을 주는 변동 요인의 영향력을 분석하고, 예측일의 상황에 맞게 적절한 수치의 변수를 예측 시스템에 제공하여 예측의 정확성을 향상시키는 방안에 대하여 알아보았다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.08a
/
pp.99-104
/
1998
한국어의 자연스러운 음성합성을 위해 280문장에 대하여 남성화자 1명이 발성한 문음성 데이터를 음운 세그먼트, 음운 라벨링, 음운별 품사 태깅하여 음성 코퍼스를 구축하였다. 이 문 음성 코퍼스를 사용하여 음운환경, 품사 뿐만 아니라 구문 구조에 이하여 음운으 lwlthrtlrks이 어떻게 변화하는가에 대하여 xhdrPwjrdfmh 분석하였다. 음운 지속시간을 보다 정교하게 예측하기 위하여, 각 음운의 고유 지속시간의 영향이 배제된 정규화 음운지속시간을 회귀트리를 이용하여 모델화하였다. 평가결과, 기존의 회귀트리를 이용한 음운지속시간 모델에 의한 예측오차는 87%정도가 20ms 이내 이었지만, 정규화 음운 지속시간 모델에 의한 예측 오차는 89% 정도가 20ms 이내로 더욱 정교하게 예측되었다.
본 논문은 3상 T-type 3-레벨 인버터의 모델예측제어에 관한 연구이다. 모델예측제어는 시스템의 모델링을 통한 최적의 성능을 제공하는 제어기법으로 PI 제어보다 빠른 동특성을 갖지만, 정확한 파라미터 값이 요구된다. 본 논문에서는 시스템 파라미터 오차가 3상 T-type 3-레벨 인버터의 예측제어에서 어떤 영향을 주는지 알아보고 출력 파형을 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.