Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.3
/
pp.565-571
/
2010
This paper proposes a parity discrimination algorithm which discriminates N bit parity using a perceptron neural network and back propagation algorithm. This algorithm decides minimum hidden unit numbers when discriminates N bit parity. Therefore, this paper implements parity discrimination experiments for N bit by changing hidden unit numbers of the proposed perceptron neural network. Experiments confirm that the proposed algorithm is possible to discriminates N bit parity.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.324-326
/
1999
현대는 빠른 기술의 발달과 제품의 대량 생산에 의한 가격의 인하로 인해 칼라 스캐너, 칼라 모니터와 칼라 프린터 같은 컴퓨터 주변 칼라 장비들이 널리 보급되었다. 뿐만 아니라 이들 장비들의 성능도 날이 갈수록 향상되고 있다. 그러나 이들 장비간의 칼라 재현 기술과 칼라 일치 문제에는 아직도 왜곡 현상이 남아 있어 이를 해결하기 위한 방법이 많이 연구되고 있다. 신경회로망에 의한 방법은 각 칼라 장비들의 특성을 쉽게 모델링 할 수 있을 뿐만 아니라 별도의 참조 테이블을 구성 할 것도 없이 직접 원하는 칼라 값으로의 매핑이 가능하기 때문에 효율적이다. 여기서는 신경회로망의 오차역전파(Error Back Propagation:EBP) 알고리즘을 이용하여 칼라 스캐너와 칼라 프린터의 모델링 구현과 이를 통합한 통합형 모델을 제시하고 나아가 이를 구현하기 위한 방법과 문제점에 대해 알아본다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.4
/
pp.817-822
/
2011
This paper first proposes the speech recognition algorithm by detection of the speech and noise sections at each frame using a neural network training by back-propagation algorithm, then proposes the spectral subtraction method which removes the noises at each frame according to detection of the speech and noise sections. In this experiment, the performance of the proposed recognition system was evaluated based on the recognition rate using various speeches that are degraded by white noise and car noise. Moreover, experimental results of the noise reduction by the spectral subtraction method demonstrate using the speech and noise sections detecting by the speech recognition algorithm at each frame. Based on measuring signal-to-noise ratio, experiments confirm that the proposed algorithm is effective for the speech by corrupted the noise using signal-to-noise ratio.
Proceedings of the Acoustical Society of Korea Conference
/
1996.06a
/
pp.41-43
/
1996
동해의 경우 강한 극전선이 존재하여 복부해역과 남부해역의 음속구조는 커다란 차이를 보이고 있다. 이러한 해역에서 평균음속구조를 구하여 표준해양을 설정할 경우 음파 전파경로의 차이가 커지게 된다. 따라서 이러나 해역에서 해양음향 토모그래피를 이용한 해양탐사를 수행하기 위해서는 해역별로 다른 음속구조를 가지는 표준해양의 설정이 필요하며 이를 근거로 음파의 전파경로 및 음속구조를 표준해양으로 설정하여 수온 및 수중음속의 변동량을 역추정하는 방법을 이용하고 있다. 본 연구에서는 인위적인 극전선을 설정하고 해역별 특징을 갖는 표준해양을 설정하여 음파 도달시간의 기준을 설정하고 음속구조의 역추정을 수행하여 기존의 해양음향 토모그래피에 의한 해양탐사 방법과 비교하였다. 그 결과 기존의 해양음향 토모그래피를 이용한 역추정에서는 전선의 형태를 재현하기 위해서 여러 개의 음원과 수신기가 필요하였으나 거리종속 표준해양을 이용할 경우 그 수가 줄어도 가능하고 평균오차고 작아지는 결과를 얻었다.
This paper presents an adaptive back propagation algorithm that update the learning parameter by the generated error, adaptively and configuration of the range for the initial connecting weight according to the different maximum target value from minimum target value. This algorithm is expected to escaping from the local minimum and make the best environment for the convergence. On the simulation tested this algorithm on three learning pattern. The first was 3-parity problem learning, the second was $7{\times}5$ dot alphabetic font learning and the third was handwritten primitive strokes learning. In three examples, the probability of becoming trapped in local minimum was reduce. Furthermore, in the alphabetic font and handwritten primitive strokes learning, the neural network enhanced to loaming efficient about 27%~57.2% for the standard back propagation(SBP).
In this paper we propose a new Hybrid learning rule applied to multilayer feedforward neural networks, which is constructed by combining Hebbian learning rule that is a good feature extractor and Back-Propagation(BP) learning rule that is an excellent classifier. Unlike the BP rule used in multi-layer perceptron(MLP), the proposed Hybrid learning rule is used for uptate of all connection weights except for output connection weigths becase the Hebbian learning in output layer does not guarantee learning convergence. To evaluate the performance, the proposed hybrid rule is applied to classifier problems in two dimensional space and shows better performance than the one applied only by the BP rule. In terms of learning speed the proposed rule converges faster than the conventional BP. For example, the learning of the proposed Hybrid can be done in 2/10 of the iterations that are required for BP, while the recognition rate of the proposed Hybrid is improved by about $0.778\%$ at the peak.
This paper proposes a novel fast layer-by-layer algorithm that has better generalization capability. In the proposed algorithm, the weights of the hidden layer are updated by the target vector of the hidden layer obtained by least squares method. The proposed algorithm improves the learning speed that can occur due to the small magnitude of the gradient vector in the hidden layer. This algorithm was tested in a handwritten digits recognition problem. The learning speed of the proposed algorithm was faster than those of error back propagation algorithm and modified error function algorithm, and similar to those of Ooyen's method and layer-by-layer algorithm. Moreover, the simulation results showed that the proposed algorithm had the best generalization capability among them regardless of the number of hidden nodes. The proposed algorithm has the advantages of the learning speed of layer-by-layer algorithm and the generalization capability of error back propagation algorithm and modified error function algorithm.
Journal of Advanced Marine Engineering and Technology
/
v.18
no.5
/
pp.36-45
/
1994
This paper describes how to identify standard numbers and to diagnose defects of the ball bearings. The first stage of the networks is a procedures for identifying standard numbers of the bearings, and the next stage carries out the diagnosis of defects on the outer race and the inner race of bearings. The identification and the diagnosis of bearings were carried out by simulations and experiments.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.10a
/
pp.264-267
/
2010
본 논문에서는 오차역전파 학습 알고리즘을 사용하여 신경회로망을 학습시켜, 각 프레임에서의 음성 및 잡음 구간의 검출에 의한 음성인식 알고리즘을 제안한다. 그리고 신경회로망에 의하여 음성 및 잡음 구간의 검출에 따라서 각 프레임에서 잡음을 제거하는 스펙트럼 차감법을 제안한다. 본 실험에서는 원음성에 백색잡음 및 자동차잡음을 부가하여 음성인식의 인식율을 평가한다. 또한 인식시스템에 의하여 검출된 음성 및 잡음 구간을 이용하여 각 프레임에서의 스펙트럼 차감법에 의한 잡음제거의 실험결과를 나타낸다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.10a
/
pp.63-65
/
2012
본 논문에서는 입력된 음성이 남성화자인지 여성화자인지를 구분하는 FFT 스펙트럼 및 LPC 켑스트럼 입력에 의한 성별인식 알고리즘을 제안한다. 본 논문에서는 특히 남성화자와 여성화자의 특징벡터를 비교 분석하여, 이러한 남녀의 음향학적인 특징벡터의 차이점을 이용하여 신경회로망에 의한 성별 인식에 대한 실험을 수행한다. 특히 12차의 LPC 켑스트럼 및 8차의 저역 FFT 스펙트럼의 특징벡터를 사용한 경우에, 남성화자 및 여성화자에 대해서 양호한 남녀 성별인식률이 구해졌다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.