Journal of the Korean Data and Information Science Society
/
제27권6호
/
pp.1573-1583
/
2016
주택가격은 대내외적으로 경기관련 많은 변수들에 의해 영향을 받기 때문에 다변량분석의 경우 이와 관련된 변수들간의 상호관련성을 검정하여야 한다. 그랜저 인과성 검정결과 변수들간에 서로 인과성이 있는 것으로 나타났다. 또한 변수들 사이에 공적분 존재유무를 확인한 결과 공적분이 존재하므로 오차수정항이 포함된 벡터오차수정모형을 이용하여 분석을 시도하였다. ARIMA 및 VAR 모형과의 예측력 실증비교 결과 벡터오차수정모형에 의한 예측력이 이들 두 모형에 비해 우수함을 확인할 수 있었다.
본 연구는 우리나라 상장기업중 금융 보험업을 제외하고 비교적 상장기업수가 많은 9개 산업에서 임의로 선정한 180개 표본기업을 분석대상으로 하였다. 1989년 1월부터 1996년 12월까지를 분석대상기간으로 설정하여 베타계수 예측능력을 향상시키기 위한 회계위험변수모형의 예측능력을 평가하고 위험수준별 예측능력에 차이가 있는지도 분석하였다. 아울러 베타계수 추정시 사용된 수익률 측정간격에 빠른 베타계수의 안정성과 회계위험변수모형의 예측능력을 분식하였다. 본 연구의 중요한 결과를 요약하면 다음과 같다. 첫째, 포트폴리오를 구성한 경우 수익률 측정기간에 관계없이 일관되게 예측오차가 유의적으로 적게 나타나 회계위험변수모형의 베타계수 예측능력이 우수하였으며 베타계수예측에 회계 변수의 유용성이 확인되었다. 둘째, 위험수준에 따른 베타계수의 안정성 분석에서는 중위험집단의 베타가 안정성이 높았으며 고위험집단에서 예측오차가 가장 크게 나타나 불안정하였다. 회계위험변수모형의 예측능력은 위험수준에 관계없이 단순모형보다 우수하여 베타예측에 회계정보의 유용성을 일반화시킬 수 있을 것이다. 셋째, 수익률 측정간격에 따른 베타계수의 안정성과 예측능력 분석에서는 월별수익률을 이용하는 경우보다 주별수익률을 이용하는 경우 추정베타의 안정성이 높고 베타계수 예측모형의 예측능력이 향상되는 것으로 나타났다. 넷째, OLS베타를 수정하지 않고 이용하는 경우보다 Bayesian 기법으로 수정한 Bayesian수정 베타를 이용할 경우 예측오차가 감소하여 Bayesian 수정기법의 유용성이 확인되었다.
본 연구는 관광수요 예측 분야에서 사용되는 계절형 ARIMA 모형과 다변량 계절형 시계열 모형과 오차수정모형의 성능을 비교한 것이다. 본 연구에서는 일본, 중국, 미국, 필리핀에 대한 실제 자료를 이용한 결과 관광 수요에는 계절성이 중요한 역할을 하는 것을 보이고 각 국가별로 예측 정확도를 RMSE를 기준으로 하여 비교하였다.
본 연구는 패널 공적분 검정 그리고 비교적 최근에 개발된 패널 단위근 검정을 이용하여 지역 주택가격과 지역총생산 간의 장기관계를 분석하였다. 횡단면 의존성(cross-section dependence)이 확인된 경우, 이를 고려한 Pesaran의 CIPS 패널 단위근 검정을 이용하였다. 기존 패널 단위근 검정의 결과와 다르게 CIPS 검정은 변수들이 불안정성을 갖는 것으로 나타났다. 또한 패널 벡터오차수정모형(VECM)을 이용하여 변수들 간의 인과관계를 확인하였으며, 고정효과모형(Fixed effect)과 패널 자기회귀시차(ARDL)모형을 이용하여 계수들의 장기관계를 구체적으로 추정하였다. 먼저 변수들 간에 공적분관계가 형성되며 장 단기 인과관계가 성립하는 것으로 나타났다. 또한 VECM 모형의 오차수정항은 통계적으로 유의한 것으로 나타나 변수들 간의 장기 공적분 관계를 뒷받침하고 있다. 모형의 추정 결과, 장기적으로 주택가격의 상승은 지역총생산을 증가시키며 반대의 관계도 성립함을 알 수 있다. 이 결과에 의해 우리나라 지역 주택시장에서 부의 효과(wealth effect)가 존재하고 있는 것으로 나타났다. 이러한 결과들과 함께 오차수정항으로부터, 주택 가격과 경제 변수들은 단기적으로는 일시적인 균형상태로부터 이탈될 수 있지만, 장기적으로는 이들 변수는 균형관계에 있다는 것을 의미한다.
본 연구에서는 금융시장 통합화에 따른 금융 시장 전염을 생물학적 전염개념에 기초하여 분석하는 검정 방법론을 제시하였다. 금융 시장 통합화를 측정하기 위하여 U-통계량을 사용하였고, 금융 시장 전염 검정을 위하여 단일방정식 오차수정 모형을 중심으로 잠재 요인모형, 분위수 회귀모형과 런검정을 사용하였다. 시뮬레이션결과 단일방정식 오차수정 모형이 자기상관을 갖는 오차항을 포함한 선형 회귀모형에서 비교적 높은 수준의 적합도를 일관성 있게 보여 주고 있다.
얼마나 많은 에너지를 사용하느냐에 대한 예측은 사회에서 중요한 이슈이다. 특히 주거 건물은 건물의 특성상 다른 건물에 비해 예측하기 힘들다. 본 논문에서는 주거용 건물의 전력 사용량에 대한 시계열 분석의 방법들을 설명하고자 한다. 일반적으로 온도는 전력 사용량과 밀접한 관련이 있다고 알려져 있다. 변수들 사이에 공적분 관계가 존재한다면, 시간에 따른 오차를 조정하는 방법인 오차수정모형을 적용한다. 전력 사용량과 온도를 포함한 변수들 사이에 공적분 관계가 있음을 보이고, 새로운 온도 반응 함수를 정의하여 온도 효과를 고려한 오차수정모형을 적용하고자 한다.
계통한계가격은 발전회사들이 생산한 전력을 판매하고 받게 되는 가격으로서, 발전설비의 건설 및 보수에 대한 의사결정에서 중요한 역할을 한다. 본 논문에서는 천연가스 가격이나 원유 가격 등을 이용하여 계통한계가격을 장기 예측하는 모형을 제안한다. 분석대상 변수들이 비정상시계열적 특성을 지니므로 변수 간 장기관계인 공적분관계에 대한 검정을 시행하고, 공적분 관계와 단기적 동학에 대한 관계식을 추정하여 오차수정모형을 구성하였다. 분석대상 기간이 짧아 분석결과의 안정성이 낮은 문제를 고려하여, 다양한 검정 및 추정기법을 사용하여 분석의 강건성을 제고하고자 하였다. 기존 연구에 비해 다양한 연료가격을 검토하고, 시계열 분석의 엄밀성과 강건성을 제고했다는 점이 본 연구가 기여한 부분이다. 분석 결과 계통한계가격과 천연가스가격, 계통한계가격과 유가, 계통한계가격과 천연가스가격 및 유가 간에 공적분 관계가 존재하는 것으로 나타나, 각각의 공적분 관계를 기반으로 오차수정모형을 추정하고 예측력을 비교하였다. 단기식에서는 오차수정항, 전력공급예비율, 시차항을 고려하였다. 각 오차수정모형의 표본외 예측력을 비교한 결과, 계통한계가격과 천연가스가격 간 공적분 관계를 이용하는 모형이 평균제곱근오차와 평균절대백분율오차 모두 가장 낮은 값을 보이는 등 예측력이 좋은 것으로 평가되었다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1449-1466
/
2014
본 논문에서는 기초자산의 선물을 이용하는 헷지 전략을 연구하였다. 최적헷지비율을 구하기 위한 전통적인 방법으로 회귀분석이 사용되고 있으나, 현물과 선물 사이에 존재하는 장기균형관계와 금융 시계열 자료의 분산에 존재하는 변동성 군집현상 등의 특징을 설명하지 못하는 한계가 있다. 이를 극복하기 위해 코스피200 지수와 선물 자료에 대해 평균모형으로 벡터오차수정모형을 적합하고, 분산모형으로 다변량 GARCH 모형을 적합하여 분산-공분산 행렬을 추정하고, 이를 통해 최적헷지비율을 구하는 방법을 연구하였다. 실증분석 결과에 의하면 시장이 안정적일 때에는 회귀분석을 사용해도 큰 차이가 없지만, 시장이 불안정해지고 변동성이 커지는 구간에서는 벡터오차수정모형과 다변량 GARCH 모형을 이용하는 경우에 헷지성과가 월등히 좋아지는 결과를 얻을 수 있었다.
시계열 확산 데이터를 활용하여 Bass 확산모형을 최소자승법(OLS)으로 추정하면, 초기에는 과다 추정하고 변곡점을 지나서는 수요를 낮게 추정하는 경향이 있다. 또한 확산모형에서 필요한 변수가 모형에서 빠짐으로 인해 발생하는 설정오류는 잔차의 자기상관을 발생시킬 수 있다. 자기상관이 오차항에 있을 경우, 추정된 모형의 모수들은 불편추정치이나 비효율적 추정치가 된다. 따라서 이러한 문제를 해결하는 확산모형의 개발이 요구된다. 본 연구에서는 자기상관 오차항을 고려한 수정된 확산모형을 제안하였다. 모형의 검증을 위해 미국의 CT-스캐너와 우리나라의 FPD TV 판매량를 제안된 모형에 응용하였다. 분석결과, 제안된 모형이 기존 모형에 비해 적합도와 모형의 주요 추정 통계량에서 우수함을 보였다.
본 논문에서는 다변량 시계열 모형 진단을 위해 잔차의 자기상관성 유무를 확인하기 위한 와일드 붓스트랩(wild bootstrap) Ljung-Box(LB) 검정통계량을 연구하였다. 일반적으로 LB 검정은 오차가 서로 독립이며 동일한 분포를 따른다는 IID 가정 하에 유도되는 점근적 카이제곱 분포를 이용한다. 한편 금융시계열 자료는 분산에 조건부 이분산성이 존재하기 때문에 오차의 IID 가정을 만족시키지 못하며 이에 따라 점근적 분포를 이용한 LB 검정은 제1종의 오류를 만족시키지 못하게 된다. 이를 극복하기 위해 와일드 붓스트랩을 이용한 LB 검정법을 제안하고 그 성질을 연구하고자 한다. 벡터자기회귀 모형과 벡터오차수정 모형 등의 다양한 다변량 시계열 모형을 이용하여 모의실험을 실시하는 한편, 코스피 200지수와 지수선물 자료를 이용한 실증분석을 통해 와일드 붓스트랩을 이용한 LB 검정법이 조건부 이분산성의 부정적인 영향을 효과적으로 제거할 수 있음을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.