• Title/Summary/Keyword: 오존

Search Result 1,971, Processing Time 0.03 seconds

Study on the Removal of Pharmaceuticals and Personal Care Products and Microorganism Inactivation by Ozonation (오존처리에 의한 의약품류의 제거와 미생물의 불활성화에 대한 연구 및 고찰)

  • Kim, Il-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1134-1140
    • /
    • 2010
  • Ozonation is a promising process that can effectively reduce the occurrence of micropollutants and pathogen in water. This study investigated the performance of ozonation for the removal of pharmaceuticals and personal care products (PPCPs) in secondary effluent from wastewater treatment plant. Moreover, the disinfection potential of ozonation applied for PPCPs removal was discussed. Secondary effluent filtered by sand filter was used for tested water, and ozonation was performed under 2, 4 and 6 mg/L of ozone doses. As a result, 6 mg/L of ozone dose (ozone consumption : 4.4 mg/L) was essential for the effective removal of 37 PPCPs in tested water. Several previous studies showed that the operation condition could achieve approximately 3 log inactivation of total coliform and enteroviruses. On the other hand, dissolved ozone concentration in tested water increased by 1.8 mg/L under 6 mg/L of ozone dose, probably resulting in the increase of bromate formation potential. This result implies that as alternatives to suppress the bromate formation potential during the oxidation of PPCPs by ozone, investigations on advanced oxidation processes are required.

Evaluation of Ozone Application for Drinking Water Treatment Process Using DAF (DAF를 이용한 정수처리 공정에서의 오존 적용성 평가)

  • Kang, Tae-Hee;Oh, Byung-Soo;Cheong, Youn-Cheong;Kwon, Soon-Buhm;Sohn, Byeong-Yong;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.567-572
    • /
    • 2005
  • In this study, a lab-scale test was performed to apply the ozone process in drinking water treatment plant using dissolved ai, flotation(DAF). The kinetic study on the ozone decay and hydroxyl(OH) radical formation was investigated by several parameters, such as I.D(Instantaneous ozone demand), $k_c$(ozone decomposition rate), ozone-Ct and OH radical-Ct. Ozonation of several target waters, such as raw water, DAF treated water and filtrate, was conducted to select the optimum position and dosage of ozone process. The highest value of Ozone-Ct and OH radical-Ct was observed at DAF treated water at initial run time($0{\sim}30\;min$). From the results of ozonation, the intermediate ozonation was proposed as the optimum position and the effective dose of ozone was determined to be $1{\sim}2\;mg/L$.

Removal Characteristics of Synthetic Musk Compounds in Water by Ozone Treatment (오존처리에 의한 수중의 인공 사향물질 제거특성)

  • Seo, Chang-Dong;Son, Hee-Jong;Yoom, Hoon-Sik;Lee, Sang-Won;Ryu, Dong-Chun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.73-78
    • /
    • 2012
  • In this study, three different synthetic musk compounds (SMCs) in the Nakdong river water (raw water) and rapid sand filtered water were treated by $O_3$ process. The experimental results showed that the removal efficiency of musk ketone (MK) was lower than removal efficiency of AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene) and HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[c]-2-benzopyran) for both the raw water and the rapid sand filtered water. And in general, the removal efficiencies of three SMCs in the raw water were lower than that in the sand filtered water. Under the $O_3$ dose of 0.5~10.0 mg/L, the removal rate constants (k) of three SMCs for the raw and sand filtered waters increased rapidly with the increased $O_3$ dose. In the case of drinking water treatment plants (DWTPs) which were selected pre- and post-$O_3$ processes (located in the downstream of Nakdong River), operation conditions of pre- and post-$O_3$ process were $0.5{\sim}2.0mg{\cdot}O_3/L$ (2~4 min) and $0.5{\sim}2.5mg{\cdot}O_3/L$ (6~8 min). Therefore, $O_3$ doses and contact times of same conditions with above were very difficult to remove SMCs in DWTPs.

Effects of Ozonated Water Treatment on Pesticide Residues and Catechin Content in Green Tea Leaves (녹차의 잔류농약과 카테친 함량에 미치는 오존수 처리 효과)

  • Jung, Kyung-Hee;Seo, Il-Won;Nam, He-Jung;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.265-270
    • /
    • 2008
  • This study examined the effects of treating green tea leaves with ozonated water by evaluating pesticide residue levels and catechin content. The pesticide residue levels of tea leaves treated with carbendazim, captain, diazinon, fenthim, dichlorvos, and chlorpyrifos ranged from 43.2 to 48.2 ppm. For leaves treated by soaking or watering with tap water, or with 0.25 ppm of ozone water for 30 min. Pesticide residue levels were reduced by 24.0-30.2%, 30.3-33.6%, 52.4-70.5%, and 65.5-80.2%, respectively. No major differences in catechin content were observed in the leaves according to the soaking and rinsing treatments using ozonated or tap water.

High Concentration Ozone Generation Characteristics by Variation of Additional Gases and Flow Rates of Inlet Gas (입력가스의 유량변화와 첨가가스에 따른 고농도 오존발생특성)

  • 박승록;이대희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.95-101
    • /
    • 2002
  • There are many effective parameters to high concentration ozone generation. These parameters became very important elements should be considered before designing ozone generator. After designing, there are many peripheral parameters to greatly affect to high concentration ozone generation also. In this study, of many effective peripheral parameters on high concentration ozone generation, the effects of flow rate of inlet oxygen gas and some kinds of additional gases on ozone concentration were investigated As a result, when inlet oxygen gas was introduced at the range of 0.75[LPM]~2.00[LPM] the highest ozone concentration of 71145[ppm] was obtained at 1.25[LPM]. When the additional nitrogen gas was mixed to oxygen gas at the range of 0.0[vol%]~6.4[vol%] the highest ozone concentration of 73135[ppm] was obtained at 0.8[vol%] of nitrogen gas. This showed 3[%] increasing compared to the case of pure oxygen gas inlet. When the additional argon gas was mixed to oxygen gas at the range of 0.0[vol%]~6.4[vol%] the highest concentration of 67288[ppm]was obtained at 0.8[vol%]of argon gas. This is decreased value compared to that of introducing the pure oxygen.

Comparison between TOMS and OMI-derived Tropospheric Ozone (TOMS와 OMI 자료를 이용하여 산출된 대류권 오존 비교 분석)

  • Na, Sun-Mi;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 2006
  • This study compared between tropospheric column ozone by applying the SAM method to TOMS and OMI data for northern summer. Tropospheric ozone from the SAM represents a peak over the tropical Atlantic, where it is related with biomass burning. This feature is also seen in the distribution of the model and CO. Additionally, enhancement of the SAM ozone over the Middle East, and South and North America agrees well with the model and CO distribution. However, the SAM results show more ozone than the model results over the northern hemisphere, especially the ocean (e.g. the North Pacific and the North Atlantic). The tropospheric ozone distribution from OMI data shows more ozone than that from TOMS data. This can be caused by different viewing angle, sampling frequency, and a-priori ozone profiles between OMI and TOMS. The correlation between the SAM tropospheric ozone and CO is better than that between the model and CO in the tropics. However, that correlation is reversed in the mid-latitude.

Removal of COD and Color from Anaerobic Digestion Effluent of Livestock Wastewater by Advanced Oxidation Using Microbubbled Ozone (마이크로버블 오존 고도산화를 이용한 축산폐수 혐기소화 배출수의 COD와 색도의 제거)

  • Lee, Inkyu;Lee, Eunyoung;Lee, Hyejung;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.617-622
    • /
    • 2011
  • Ozone-based advanced oxidation was applied for the treatment of anaerobic digestion effluent of livestock wastewater. Initial COD and color value were 930 mg/L and 0.04, respectively, and the 1/10-diluted wastewater was used for the study. The treatment characteristics were compared between the conventionally generated ozone ($105{\mu}m$) and microbubbled ozone ($13{\mu}m$). The use of microbubbled ozone improved the removal of chemical oxygen demand (COD) and color by 85% and 26%, respectively, compared with the conventionally bubbled ozone. The application of microbubbled $O_3/UV$, $O_3/H_2O_2$, $O_3/UV/H_2O_2$ combinations resulted in 5~10% higher color removal than ozone alone, which implies that the contribution of UV or $H_2O_2$ is not significant in color removal. On the other hand, COD removal could be increased two folds compared with ozone alone through $O_3/UV/H_2O_2$ combination. The contribution of $H_2O_2$ was bigger than UV for COD removal with microbubbled ozone. Due to the enhancement of dissolved ozone and radical activity, the microbubbling enabled us to additional COD removal even after stopping ozone supply in the presence of UV or $H_2O_2$.

오존의 살균 및 탈취와 오존발생기의 발생농도 변화

  • Yun, Yeong-Mi;Go, Myeong-Seok;Kim, Hyeon-Jong;Lee, Eun-Mi;Jeong, Bong-U;Lee, Hyeon-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.473-474
    • /
    • 2000
  • Ozone has a potency for disinfection, deodorization, decolorization and decomposition of organic materials by strong oxidation. therefore we used the ozonizer to disinfection and deoderization of a piggery. CFU of the ozonated piggery was lower than the others. And the of ozonizer was redesigned from open-type to close-type to obtain high ozone concentration. We was also investigated the effect of air velocity to ozone concentration.

  • PDF

Influence of LNAPL and Soil Water on Migration of Gaseous Ozone in Unsaturated Soils (불포화 토양내에서 가스상 오존 이동특성에 대한 LNAPL과 토양수분의 영향)

  • Jung, Hae-Ryong;Choi, Hee-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.63-67
    • /
    • 2005
  • Laboratory scale experiments were carried out to delineate the effects of liquid phases, such as soil water and light nonaqeous phase liquid (LNAPL) on the transport of gaseous ozone in unsaturated soil. Soil water enhanced the transport of ozone due to water film effect, which prevents direct reaction between soil particles and gaseous ozone, and increased water content reduced the breakthrough time of ozone because of increased average linear velocity and decreased air-water interface area. Diesel fuel as LNAPL also played a similar role with water film, so the breakthrough time of ozone in diesel-contaminated soil was significantly reduced compared with uncontaminated soil. Ozone breakthrough time was retarded with increased diesel concentration, however, because of high reactivity of diesel fuel with ozone. In unsaturated soil containing two liquids of soil water and LNAPL, the transport of ozone was mainly influenced by nonwetting fluid, diesel fuel in this study.

Physicochemical Effect on Permeate Flux in a Hybrid Ozone-Ceramic Ultrafiltration Membrane Treating Natural Organic Matter (자연유기물을 처리하는 혼합 오존-세라믹 한외여과 시스템에서 물리화학적 특성이 투과플럭스에 미치는 영향)

  • Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Effects of operational conditions and solution chemistry on permeate flux in a hybrid ozone-ceramic ultra-filtration (UF) membrane system treating natural organic matter (NOM) were investigated. Results showed that the extent of permeate flux decline was higher at higher cross-flow velocity and ozone dosage, but it was higher at lower transmembrane pressure (TMP). The mechanism of fouling mitigation was found to be more dependent upon reaction between ozone and natural organic matter at/near catalytic membrane surface than scouring effect due to ozone gas bubbles. Addition of calcium into model NOM solution at high pH led to significant decline in permeate flux while the calcium effect on permeate flux decline was less pronounced at lower pH. After permeate flux decline during the early stage of filtration, the flux started recovering and approached fully to the initial value of it due to degradation of NOM by catalytic ozonation at ceramic membrane surface in the hybrid ozone-ceramic membrane system.