Study on the Removal of Pharmaceuticals and Personal Care Products and Microorganism Inactivation by Ozonation

오존처리에 의한 의약품류의 제거와 미생물의 불활성화에 대한 연구 및 고찰

  • Kim, Il-Ho (Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University)
  • 김일호 (교토대학 대학원 공학연구과 부속 유역권 종합환경질 연구센터)
  • Received : 2010.04.29
  • Accepted : 2010.12.17
  • Published : 2010.12.31

Abstract

Ozonation is a promising process that can effectively reduce the occurrence of micropollutants and pathogen in water. This study investigated the performance of ozonation for the removal of pharmaceuticals and personal care products (PPCPs) in secondary effluent from wastewater treatment plant. Moreover, the disinfection potential of ozonation applied for PPCPs removal was discussed. Secondary effluent filtered by sand filter was used for tested water, and ozonation was performed under 2, 4 and 6 mg/L of ozone doses. As a result, 6 mg/L of ozone dose (ozone consumption : 4.4 mg/L) was essential for the effective removal of 37 PPCPs in tested water. Several previous studies showed that the operation condition could achieve approximately 3 log inactivation of total coliform and enteroviruses. On the other hand, dissolved ozone concentration in tested water increased by 1.8 mg/L under 6 mg/L of ozone dose, probably resulting in the increase of bromate formation potential. This result implies that as alternatives to suppress the bromate formation potential during the oxidation of PPCPs by ozone, investigations on advanced oxidation processes are required.

미량오염물질의 산화 및 대체 소독제로 각광받는 오존처리의 하수 2차 처리수중에 잔류하는 의약품류에 대한 제거 성능을 검토하였다. 또한, 의약품류의 제거를 목적으로 한 오존처리에 의한 미생물의 불활성화에 대하여 고찰하였다. 본 연구에서는 시험수로써 하수 2차 처리수를 이용하였으며, 오존처리는 2 mg/L, 4 mg/L, 6 mg/L의 오존 주입량으로 행하였다. 오존처리에 의해 시험수중에서 검출된 37종의 의약품류를 효과적으로 제거하기 위해서는 6 mg/L의 오존 주입량 (오존 소비량 : 4.4 mg/L)이 요구되었다. 동일한 오존처리 조건하에서는 대장균군 및 enteroviruses에 대해 약 3 log의 불활성화가 달성가능할 것으로 고찰되어, 잔류 의약품류의 제거 뿐만 아니라 병원성 미생물에 대해서도 효과적인 소독효과를 달성할 수 있을 것으로 판단되었다. 반면, 6 mg/L의 오존 주입량을 이용한 오존처리시, 처리수중의 용존오존농도가 약 1.8 mg/L까지 증가하여, 발암성 물질인 브로메이트의 생성가능성이 높아질 것으로 예상되었다. 이러한 브로메이트의 생성을 억제하기 위해서는 오존처리와 UV 또는 $H_2O_2$와의 조합공정인 고도산화처리공정에 대한 검토가 필요할 것으로 판단되었다.

Keywords

References

  1. Huber, M., Canonica, S. and Park, G. Y., "Oxidation of pharmaceuticals during ozonation and advanced oxidation processes," Environ. Sci. Technol., 37, 1016-1024(2003). https://doi.org/10.1021/es025896h
  2. Ternes, T. A., Stuber, J., Herrmann, N., McDowell, D., Ried, A., Kampann, M. and Teiser B., "Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater?," Water Res., 37, 1976-1982(2003). https://doi.org/10.1016/S0043-1354(02)00570-5
  3. Vogna, D., Marotta, R. and Napolitano A., "Advanced oxidation of the pharmaceutical drug diclofenac with UV/$H_{2}O_{2}$ and ozone," Water Res., 38, 414-422(2004). https://doi.org/10.1016/j.watres.2003.09.028
  4. Oh, B. S., Jang, H. Y., Hwang, T. M. and Kang, J. W., "Role of ozone for reducing fouling due to pharmaceuticals in MF (microfiltration) process," J. Membr. Sci., 289, 178-186(2007). https://doi.org/10.1016/j.memsci.2006.11.052
  5. Kim, I. H. and Tanaka, H., "Use of Ozone-Based Processes for the Removal of Pharmaceuticals Detected in a Wastewater Treatment Plant," Water Environ. Res., 82(4), 294-301 (2010). https://doi.org/10.2175/106143009X12487095236630
  6. Okuda, T., Yamashita, N., Tanaka, H., Matsukawa, H. and Tanabe, K., "Development of extraction method of pharmaceuticals and their occurrences found in Japanese wastewater treatment plants," Environment International, 35(5), 815-820(2009). https://doi.org/10.1016/j.envint.2009.01.006
  7. Kim, I. H., Yamashita, N. and Tanaka, H., "Performance of UV and UV/$H_{2}O_{2}$ processes for the removal of pharmaceuticals detected in secondary effluent of sewage treatment plant in Japan," J. Hazard. Mater., 166, 1134-1140(2009). https://doi.org/10.1016/j.jhazmat.2008.12.020
  8. Bader, H. and Hoigne, J., "Determination of ozone in water by the indigo method," Water Res., 15, 449-456(1981). https://doi.org/10.1016/0043-1354(81)90054-3
  9. Kim, I. H., Tanaka, H., Iwasaki, T., Takubo, T., Morioka, T. and Kato Y., "Classification of the degradability of 30 pharmaceuticals in water with ozone, UV and $H_{2}O_{2}$," Water Sci. Technol., 57, 195-200(2008). https://doi.org/10.2166/wst.2008.808
  10. von Gunten U., "Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine," Water Res., 37, 1469-1487(2003). https://doi.org/10.1016/S0043-1354(02)00458-X
  11. U.S.EPA, Guidelines for Water Reuse, EPA/625/R-04/108 (2004).
  12. Farooq, S. and Akhlaque, S., "Comparative response of mixed cultures of bacteria and virus to ozonation," Water Res., 17, 809-812(1983). https://doi.org/10.1016/0043-1354(83)90076-3
  13. Paraskeva, P. and Graham, N. J. D., "Treatment of a secondary municipal effluent by ozone, UV and microfiltration: microbial reduction and effect on effluent quality," Desalination, 186, 47-56(2005). https://doi.org/10.1016/j.desal.2005.04.057
  14. Japan Sewage Works Association, Guidelines for sewer maintenance(2003).
  15. Xu, P., Janex, M. L., Savoye, P., Cockx, A. and Lazarova, V., "Wastewater disinfection by ozone: main parameters for process design," Water Res., 36, 1043-1055(2002). https://doi.org/10.1016/S0043-1354(01)00298-6