• Title/Summary/Keyword: 오존제거

Search Result 307, Processing Time 0.036 seconds

환경관련 특허동향 - 녹색 건축물에 적용되는 중수도 설치를 위한 수처리 시스템(주식회사 대성그린테크)

  • 한국환경기술인연합회
    • Environmental engineer
    • /
    • s.324
    • /
    • pp.86-93
    • /
    • 2013
  • 본 발명은 녹색 건축물에 적용되는 중수도 설치를 위한 수처리 시스템에 관한 것으로서, 더욱 상세하게는 건축물에서 배출되는 오수의 유입량을 제어하면서, 산기장치를 이용하여 상기 오수에 일정량의 에어를 공급하여 슬러지의 침강과 부패방지를 유도하는 유량조정조와, 상기 유량조정조를 거친 오수를 응집 및 침전처리하고 가압부상에의해 슬러지를 처리하는 가압부상조와, 상기 가압부상조를 거친 오수에 포함되어 있는 질소, 인을 처리하는 무산소조와, 상기 무산소조를 거친 오수에 포함되어 있는 유기물을 수처리용 접촉 메디아(DSBB)에 의해 분해하는 생물막조와, 상기 생물막조를 거친 오수를 침전과정을 통해 침전된 슬러지를 외부로 배출하는 침전조와, 상기 침전조를 거친 오수를 분리막에 통과시켜 오수에 포함되어 있는 미생물, 세균등의 미세입자들을 제거하는 분리막조와, 상기 분리막조를 거친 오수에 포함되어 있는 미처리 미세입자를 여과기에 통과시켜 처리하는 여과조와, 상기 여과조를 거친 오수를 오존($O_3$) 또는 UV 살균 처리하는 소독조와, 상기 소독조를 거쳐 최종적으로 처리된 처리수를 일정시간 동안 체류시켰다가 건축물의 중수로 재이용하기 위해 방출시키는 저수조를 포함하여 이루어지는 녹색 건축물에 적용되는 중수도 설치를 위한 수처리 시스템에 관한 것이다.

  • PDF

Effect of Organic wax residues and particles removal by DIO3 (ozonated DI water) after Silicon Wafer batch Polishing Process (오존수를 이용한 실리콘 웨이퍼 연마 후 지용성 왁스 및 오염입자 제거의 영향)

  • Yi, Jae-Hwan;Lee, Seung-Ho;Kim, Tae-Gon;Park, Jin-Goo;Lee, Gun-Ho;Bae, So-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.558-559
    • /
    • 2007
  • A commercially de-waxer which kinds of solvent after was used to remove a thick organic wax film after polishing process and several steps of SC-1 cleanings were followed for the removal of organic wax residues and particles which requires long process time and high cost of ownership (COO). DIO3 was used to remove organic wax residues too achieve low COO. In this study, 0103 rinsing could use instead of 01 water rinsing. The process time and chemical consumption were reduced by using DIO3.

  • PDF

A Study on Photoresist Strip Process using DIO3 (오존수를 이용한 감광막 제거 공정에 관한 연구)

  • Chai, Sang-Hoon;Son, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1143-1148
    • /
    • 2004
  • In this study, photoresist stripping in semiconductor or LCD (liquid crystal display) fabrication processes using DIO, was investigated. In order to obtain the high PR stripping efficiency of DIO. we have developed new ozone-generating system with high ozone concentration and ozone-resolving system with high contact ratio. In this study, we obtained ozone gas concentrations of 11 % by new ozone-generating system, ozone-resolving efficiency of 99.5 % and maximum solubility of 130 ppm in deionized water. We applied the newly designed equipments to photoresist stripping processes and obtained similar results to SPM(sulfuric-peroxide mixture) process characteristics.

HFCVD법을 이용한 대면적 BDD(Boron Doped Diamond) 전극 개발

  • An, Na-Yeong;Park, Cheol-Uk;Lee, Jeong-Hui;Lee, Yu-Gi;Choe, Yong-Seon;Lee, Yeong-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.168-168
    • /
    • 2016
  • BDD(Boron Doped Diamond) 전극은 전위창이 넓고, 다른 불용성 전극에 비해 산소발생과전압이 높아 물을 전기화학적인 방법으로 처리하는 영역에 있어 매우 효과적일 뿐만 아니라, 전통적인 불용성 전극에 비해 전극 표면에서 수산화 라디칼(-OH)과 오존(O3)의 발생량이 월등히 높아 수처리용 전극으로서의 유용성이 매우 높다. 따라서 BDD 전극을 수처리용 전극에 사용하는 경우 수산화 라디칼(-OH)과 오존(O3), 과산화수소(H2O2) 등과 같은 산화제의 생성은 물론이고, 염소(Cl2)가 포함되어 있는 전해액에서는 차아염소산(HOCl)이나 차아염소산이온(OCl-)과 같은 강력한 산화제가 발생되어 전기화학적 폐수처리, 전기화학적 정수처리, 선박평형수 처리 등의 분야에 널리 활용될 수 있다. 본 연구에서는 상온 및 상압에서 운전이 가능하고 난분해성 오염물질 제거 효과가 뛰어난 전기화학적 고도산화공정(Electrochemical Advanced Oxidation Process, EAOP)에 적합한 대면적의 BDD 전극을 개발하고 자 하였다. 이러한 BDD 전극의 성막 방법으로는 필라멘트 가열 CVD, 마이크로파 플라즈마 CVD, DC 플라즈마 CVD 등이 널리 알려져 있는데 최근에는 설비의 투자비가 비교적 저렴하고, 대면적의 기판처리가 용의한 필라멘트 가열 화학기상증착법(Hot Filament Chemical Vapor Deposition, HFCVD)이 상업적으로 각광을 받고 있다. 따라서 본 연구에서는 HFCVD 방법을 이용하여 반응 가스의 투입비율, BDD 박막의 두께, 기판의 재질 등에 따른 여러 가지 성막 조건들을 검토하여 $100{\times}100mm$ 이상의 대면적 BDD 전극을 개발하였다. Fig. 1은 본 연구를 통하여 얻어진 BDD 전극의 표면 및 단면 SEM이다.

  • PDF

Phenol Conversion Properties in Aqueous Solution by Pulsed Corona Discharge (펄스 코로나 방전에 의한 액체상 페놀 전환 특성)

  • Lee, Hyun-Don;Chung, Jae-Woo;Cho, Moo-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • A laboratory scale experiment on phenol conversion properties by pulsed corona discharge process was carried out. Effects of operating parameters such as applied voltage, input oxygen, and electrode geometry on phenol conversion and solution properties were investigated. Electrical discharges generated in liquid phase increased the liquid temperature by heat transfer from current flow, decreased the pH value by producing various organic acids from phenol degradation, and increased conductivity by generating charge carriers and organic acids. The oxygen supply enhanced the phenol conversion through the ozone generation dissolution and the production of OH radicals. Series type electrode configuration induced more ozone production than reference type configuration because it produced gas phase discharges as well as liquid phase discharges. Therefore, the higher phenol conversion and TOC(total organic carbon) removal efficiency were obtained in series type configuration.

Peroxone ($O_3/H_2O_2$) Process in Drinking Water Treatment (정수처리에서의 Peroxone ($O_3/H_2O_2$) 공정)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Bin, Jae-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.296-308
    • /
    • 2010
  • The peroxone process overcomes many of the limitations associated with conventional and advanced water treatment systems using chlorine disinfection and ozone oxidation processes. Ozone and hydrogen peroxide generate highly reactive hydroxyl free radical which oxidize various organic compounds and has highly removal efficiency. The key issue to operate peroxone process is developing the method to achieve high process effectiveness when scavengers that inhibit generation of OH radicals or consume OH radicals are co-existing in the process. Also many studies, to minimize inorganic oxidative by-products such as bromate and to reduce disinfection by-products after chlorination behind peroxone process, are needed. And we should consider the excess residual hydrogen peroxide in the water. On-line instruments and control strategies need to be developed to ensure effective and robust operation under conditions of varying load. If problems above mentioned are solved, peroxone process will be applied diversely for water treatment.

A Study on Combined Processes of Sliding Arc Plasma and Corona Dielectric Barrier Discharge for Improve the Efficiency Treatment of Harmful Substance (슬라이딩아크 방전과 코로나 방전의 복합공정을 통한 유해물질 처리효율 개선에 관한 연구)

  • Kwon, Woo-Taeg;Lee, Woo-Sik
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.108-113
    • /
    • 2014
  • The combined process of Sliding Arc Plasma and corona dielectric barrier discharge process (CDBD) was used to efficiently improve harmful substance, which convert into OH radicals which have strong oxidation potential, and so have deodorization and sterilizing effects, by generating specific radicals and anion and then reacting with the moisture contained in harmful substance. As a result of experiment, even if the size of SAP reactor is reduced from 80 A to 50 A, there is no much change and therefore it is judged the size of reactor may be minimized. And it was confirmed that after the anion and ozone generated from CDBD rector react with harmful substance, a anion was reduced from 510,000 ppb to 470 ppb and ozone from 98 ppb to 22 ppb. It was also judged the stability and durability of plasma producer are excellent. Accordingly, it is considered the harmful substances which exist in indoor air quality will be efficiently improved and removed by using further plasma combined process through this study.

Removal of Residual Antibiotics - Erythromycin, Sulfamethazine and Sulfathiazole - from water by Ozone Oxidation (수중 미량 잔류항생물질 Erythromycin, Sulfamethazine, Sulfathiazole의 오존산화제거)

  • Choi, Yeon-Woo;Han, Min-Su;Song, Jun-Hyuck;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.347-356
    • /
    • 2017
  • Oxidation of erythromycin, sulfamethazine and sulfathiazole by ozone was experimentally investigated to see the effects of background water quality such as ultrapure water, humic acid and biologically treated wastewater and water temperature on the removal rate, consequently to provide design information when the ozone treatment process is adopted. Initial concentration of the antibiotics was spiked to $10{\mu}g/l$ and ozone dose was 1, 2, 3, 5, 8 mg/l. While the removal rate of erythromycin under ultrapure water background by ozone oxidation was over 99%, that under humic acid and biologically treated wastewater background was markedly reduced to the range of 59.8%~99% and 17.0%~99%, respectively. When water temperature is decreased from $20^{\circ}C$ to $4^{\circ}C$, the removal rate is reduced from the range of 17.0%~99% to the range of 9.4%~97.4% under biologically treated wastewater background. The effects of background and temperature on the removal rate of sulfamethazine and sulfathiazole were similar to erythromycin, but the degree was different. Therefore, it is concluded that the background of water to be treated as well as water temperature should be taken into consideration when the design factor such as ozone dose is determined to meet the treatment objective in the ozone treatment process.

A Study on the Degradation Characteristics of 1,4-dioxane at Different Initial $H_2O_2$ Concentration with Advanced Oxidation Process using Ozone and Hydrogen Peroxide ($O_3/H_2O_2$를 이용한 고급산화공정에서 초기 $H_2O_2$ 농도에 따른 1,4-dioxane의 제거 특성 연구)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1108-1113
    • /
    • 2005
  • Advanced oxidation process involving $O_3/H_2O_2$ was used to eliminate 1,4-dioxane and to enhance the biodegradability of dioxane-contaminated water. Oxidation process was carried out in a bubble column reactor under different pH and $H_2O_2$ concentrations. The removal efficiencies of 1,4-dioxane were investigated at hydrogen peroxide concentration between 40 and 120 mg/L. At the same pH, removal efficiencies of 1,4-dioxane increased with increasing initial $H_2O_2$ concentration. There was a linear relationship between initial concentration of $H_2O_2$ and the amount of consumed $O_3$. It was observed that the high $H_2O_2$ concentration accelerated the generation of hydroperoxy ions(${HO_2}^-$) and hydroxyl radicals($OH{\cdot}$). Hydrogen peroxide enhanced the decomposition of 1,4-dioxane and the biodegradability of the solution.

Water Treatment of Seawater Recirculating Aquaculture System by Using Three Phase Fluidized Bed Reactor (삼상 유동층 반응조를 이용한 해수 순환 여과 시설의 수처리)

  • Lee, Byung-Hun;Choi, Hyeok;Ryu, Jong-Soo
    • Journal of Aquaculture
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2000
  • Capacity of water treatment of the three phase fluidized bed reactor as a biofilter in the seawater recirculating system was evaluated. The water treatment system consists of fluidized bed reactor for ammonia removal, cartridge filter for solid removal and ozone contactor for disinfection. Mean concentration of water quality parameters: COD, TAN, $NO_2$-N, $NO_3$-N, SS and alkalinity were 9.0, 0.22, 0.05, 20.0, 9.5 and 70.0 mg/l, respectively; the relevant values were 7.6 for pH and 3.64 NTU for turbidity. These indicate the maintenance of good water quality by the treatment system. The influent TAN loading rate in to the fluidized bed reactor ranged from 4.3 to 32.9 g/$m^3$/day, and averaged to 20 g/$m^3$/day. TAN removal efficiency of each phase of the fluidized bed reactor was 47-60%, indicating the effective ammonia removal. During operation the effluent of fluidized bed reactors also maintained the unionized ammonia nitrogen level below 0.002 mg/l.

  • PDF