• Title/Summary/Keyword: 오존제거

Search Result 307, Processing Time 0.028 seconds

Alkali metal free texturing for mono-crystalline silicon solar cell (알카리 금속을 배재한 단결정 실리콘 태양전지의 텍스쳐링 공정)

  • Kim, Taeyoon;Kim, Hoechang;Kim, Bumho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.48.1-48.1
    • /
    • 2010
  • Mono-crystalline silicon solar cell is fabricated by using alkali metals. These alkali metal, used in wet etching process, must be removed for the high efficiency solar cell. As wet etching process has been adapted due to its low cost. But lots of alkali metals like potassium remains on the silicon surface and acts as impurities. To remove these alkali metals many of cleaning process have to be applied when solar cell manufacturing process. In terms of alkali metal removal, modified etchant solution is required for concise cleaning process. In this paper ethylenediamine was used and proposed for the substituion of postassium hydroxide.

  • PDF

선박배기가스 유해물질 저감을 위한 선박용 SCR 시스템 요소기술에 관한 소개

  • Park, Yun-Yong;Song, Ha-Cheol;Sim, Cheon-Sik;An, Gi-Ju;Park, Gi-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.77-78
    • /
    • 2015
  • 산업화로 인하여 토지의 사막화, 물부족, 오존층 파괴, 지구 온난화 등 많은 환경문제가 발생되었으며 아직 진행 중에 있다. 이에 UN에서는 환경 규제를 강화하였으며 국제해사기구(IMO:International Maritime Organization)에서는 선박의 배기가스 규제 강화를 위하여 NOx(질소산화물) 및 SOx(황산화물)의 배기량을 줄이도록 하고 있으며 2016년부터는 본격적으로 규제하려 하고 있다. 상기의 규제 물질 중 NOx를 제거하는 선택적환원촉매(SCR:Selectivity Catalytic Reduction) 시스템은 선박의 배기가스가 지나가는 통로에 요소수(Urea)를 분무하여 $260^{\circ}C$ 이상의 높은 온도에서 요소수에 있는 암모니아가 배기가스에 있는 NOx와 반응, 결합함으로서 NOx를 질소와 산소로 분리, 제거하는 방식이다. 하지만 선박의 경우 대부분 엔진이 2행정으로 배기가스 온도가 일반적으로 $180^{\circ}C{\sim}220^{\circ}C$이기 때문에 요소수에 있는 암모니아가 배기가스에 있는 NOx와 반응하지 않아 환원률이 높지 않다. 이에 우리는 초미세기포를 이용하여 낮은 온도에서도 반응할 수 있는 요소수 및 요소수 활성화 기기를 개발하여 상기의 문제점들을 최소화 할 수 있도록 하였다. 또한 SCR 시스템의 점성유동해석을 통하여 보다 효율적인 SCR 시스템의 개발을 할 수 있도록 기여하였다.

  • PDF

Water Treatment Method for Removal of Trihalomethanes, Pesticides, Heavy Metals and Detergent in Drinking Water (2). -Effective Removal Method of Pesticides, Heavy metals and Detergent in Drinking Water- (상수중 Trihalomethanes, 농약, 중금속 및 합성세제의 효율적인 제거를 위한 수처리 방법 제 2보. -상수중 농약, 중금속 및 합성세제의 효율적인 제거방법-)

  • Park, Jong-Woo;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.37 no.6
    • /
    • pp.480-486
    • /
    • 1994
  • The present series of investigations have been undertaken to know the effective removal method of some pesticides, heavy metals and detergent when the doses of oxidants and coagulant were changed in the treatment process of drinking water containing organic material. Three pesticides, IBP, diazinon and CNP, were removed by about 68 to 100% by treatment of oxidant, $Cl_2$. Especially, diazinon was completely removed by treatment of $Cl_2$ and other oxidants such as $Cl_2,\;KMnO_4\;and\;O_3$. However, butachlor removal measured only 20.3 to 26.7% due to treatment of all oxidant used. A detergent, sodium dodecylbenzenesulfonate, was effectively removed by treatment of $O_3$ but remained stable in the presence of other oxidants. The heavy metals of Cd, Pb, Cu and Zn in water were not affected by treatment of all oxidants used. By changing the concentration of humic matter and the dosage of coagulant, the removal of heavy metals was increased according to the increase of coagulant dosage, and decreased when increasing the concentration of humic matter, whereas the pesticides and detergent were not effectively removed.

  • PDF

Removal of Bromate by Iron, Copper and Silver Impregnated Activated Carbon (철, 구리, 은 첨착활성탄을 이용한 브롬산염의 제거)

  • Choi, Seong-Woo;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.178-182
    • /
    • 2006
  • The purpose of this research is to remove the bromate that is a disinfection by-poduct of water purification by ozone. I achieved a high rate of removal with iron, copper, or silver impregnated activated carbon by using both the adsorbing power of granular activated carbon and the oxidizing power of metal ions as deoxidizing agents. In the removal test of bromate with the quantity of activated carbon input I injected each activated carbon by 0.1, 0.3, 0.1, and 1.0 g and let them react for 240 minutes. I found the quantity of removed bromate was in proportion to the amount of input. The removal rate of bromate increased about 20% when I used acid treated activated carbon. The metal impregnated activated carbon had a higher removal rate of bromate than that of general activated carbon by about $30{\sim}50%$. Iron impregnated activated carbon showed a 92% removal rate of bromate. Iron, copper, or silver impregnated activated carbon removed about $0.9{\sim}1.5mg\;{BrO_3}^-/g$ while general activated carbon removed about $0.02{\sim}0.45mg\;{BrO_3}^-/g$. In the continuous column reaction, there were breakthrough phenomena at 96, 180, and 252 hours when I tested EBCT by 1, 2 and 3 minutes while I was changing the flux rate of bromate from 15.6 to 46.8 mL/min.

Variation of Pollutant Removal Efficiency and Backwashing Effect of BAC Basin in Advanced Water Treatment Processes (고도정수공정에서 오염물질 제거효율 변화특성과 BAC조의 역세척에 따른 영향)

  • Park, Soo-Yee;Lee, Sang-Bong;Sin, Sang-Min;Jun, Chang-Jea;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • In this paper, the property of influent water and variations of removal efficiencies in each unit processes were studied based on the experiment data from the advanced water treatment plant in a city of Korea. The microbial species in the biological activated carbon(BAC) after backwashing of activated carbon filtration tank(ACFT) were also identified. The property and the removal efficiencies were evaluated by considering 8-9 items. The variations of 4 items were investigated from the influent and effluent of ACFT. SEM recording were conducted on BAC samples before and after backwashing. And the existence of attached microorganisms were identified through HPC(Heterotrophic Plate Counter) investigation. For the property of influent water, the concentrations of most items were maintained in the constant ranges, some items had seasonal properties. For the removal efficiencies, there were some items showing similar monthly-pattern and increasing with time, other items decreasing at the ozone contactor. Through these investigations, it was possible to distinguish the target items, which were removed by the advanced processes. The existence of microorganisms in ACFT could be predicted based on the variation curve of NH$_3$-N, and this fact were proved by SEM and HPC.

물 플라즈마 젯을 이용한 라디칼 미스트 생성 및 살균효과

  • Ma, Suk-Hwal;Heo, Jin-Yeong;Kim, Gang-Il;Mun, Se-Yeon;Hong, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.192.1-192.1
    • /
    • 2016
  • 최근 들어, 열악한 실내 공기 환경과 미세 먼지의 유입으로 아토피 피부염, 알레르기성 비염 및 천식 등의 감염성 질환이 증가하고 있다. 따라서, 공기 중 병원균(Airborne pathogens)을 친환경적으로 제거하는 기술이 요구되고 있는 추세이다. 본 연구에서 제안하는 시스템은 물을 이용하여 플라즈마를 발생시키는 시스템이다. 기존 플라즈마를 이용한 공기 정화 장치는 공기를 사용하여 플라즈마를 발생시키므로 오존과 같은 인체에 유해한 물질들이 발생되는 문제점이 있다. 하지만, 본 연구에서는 물을 사용하여 플라즈마를 발생시키므로 활성 라디칼들이 포함된 물을 미스트 형태로 분사하여 인체에 무해하며, 대기 중 병원균 살균이 가능한 장점이 있다. 물 플라즈마 젯 분사장치는 전원 공급 장치, 플라즈마 전극 그리고 플라즈마 노즐로 이루어져 있으며 주입되는 물을 기반으로 플라즈마를 발생시킨다. 장치의 특성을 분석하기 위하여, 오실로스코프로 전압 및 전류를 측정하였고 적정법을 이용하여 생성되는 활성 라디칼들의 농도를 측정하였다. 또한 살균 능력을 평가하기 위하여 병원균 중 대표적으로 대장균을 배양하여 살균 실험을 수행하였으며, 결과적으로 90% 이상의 대장균이 사멸하는 것을 확인하였다.

  • PDF

A Study on Removal of Color in Dyeing Wastewater by Ozone Oxidation (오존산화에 의한 염색체수의 색도 제거에 관한 연구)

  • 정순형;최준호
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • This study was conducted to remove the color in dyeing wastewater by ozone oxidation process, and the results were summarized as follows ; The 18.3% of BOD and 56.3% TOC were removed as decreasing with pH 1 in dyeing wastewater, containing the polyester reducing process. It showed that terephthalic acid was precipitated at low pH. The color of dyeing wastewater was removed by the first order reaction, and the reaction rate constants at pH 3, 7, 12 were investigated $0.234{\;}min^{-1},{\;}0.215{\;}min^{-1}{\;}and{\;}0.201{\;}min^{-1}$ respectively. It showed that color was more effectively removed with direct reaction of ozone than radical reaction(non-direct reaction). As increasing of the water temperature, the reaction rate constants were increased slightly. It indicated that activity of ozone was improved at high water temperature.

High Efficiency Photoresist Strip Technology by using the Ozone/Napor Mixture (오존/증기 혼합물을 이용한 고효율 반도체 감광막 제거기술)

  • Son, Young-Su;Ham, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.22-23
    • /
    • 2006
  • A process for removal of photoresist(PR) m semiconductor manufacturing using water vapor with ozone is presented. For the realization of the ozone/vapor mixture process, high concentration ozone generator and process facilities have developed. As a result of the silicon wafer PR strip test, we confirmed the high efficiency PR strip rates of 400nm/mm or more at the ozone concentration of 16wt%/$O_2$. The ozone/vapor mixture process is more effective than the ozonized water Immersion process.

  • PDF

The Study of Particle Removal Efficiency (PRE) with Alkaline Ozonized Water (알칼라인 오존수를 아용한 입자제거에 관한 연구)

  • Lee, Seung-Ho;Kim, Tae-Gon;Lee, Jae-Hwan;Park, Jin-Goo;Bae, So-Ik;Lee, Gun-Ho;Kim, In-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.362-363
    • /
    • 2006
  • Ozonized DI water was supplied to make alkaline cleaning solutions to replace SCI chemicals in a bath with and without recirculation. With recirculation, low dissolved ozone and low pH cause lower particle removal efficiency (PRE) of 75%. However, direct supply of ozonized water with $NH_4OH$ to a bath without recirculation resulted in higher PRE over 93 %.

  • PDF

Removal Study of Residual Pesticides Existing in Vegetables Using Ozone (오존을 이용한 채소류내 잔류농약 제거연구)

  • 박영규;안준수
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.27-32
    • /
    • 2000
  • The hydrolysis of pesticides by ozone was studied using the ozone generator manufactured for home appliance. Ozone was treated to remove the residual pesticides in the vegetables such as lettuce, cabbage, spinach and Japanses parsely. The experimental results were optimistic with removal efficiency of more than 50%, but its achievement depends on the operational hours of zone generator and chemical structures of pesticides. This report was determined as an optimal conditions for the removal rate of pesticides as follows: ozone input concentration in the contactor was $2mg/{\ell}$, ozone contact time was at least 30 min without washing vegetables, but it was OK at 10 min in case that number of washing increases.

  • PDF