• Title/Summary/Keyword: 오일청정도

Search Result 59, Processing Time 0.025 seconds

A Green Preparation of Drug Loaded PAc-β-CD Nanoparticles from Supercritical Fluid (초임계 유체를 이용한 약물이 담지된 PAc-β-CD 나노 입자의 친환경적인 제조)

  • Jang, Min Ki;Kim, Yong Hun;Kim, Dong Woo;Lee, Si Yun;Lim, Kwon Taek
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Rapid expansion of supercritical solution (RESS) process was used to make molsidomine (MOL) loaded peracetyl-β-cyclodextrin (PAc-β-CD) nanoparticles, which were collected into the air. The effect of the concentration of the drug PAc-β-CD (0.5 and 1 wt%), extraction temperature (45 ~ 60 ℃), nozzle length (5 ~ 20 mm) and internal diameter (ID) (50 ~ 150 μm) of a capillary, and spray distance on the particle size and morphology of the resulting particles were investigated. The interaction of a drug and PAc-β-CD was confirmed by 1H-NMR spectroscopy while the particle size was measured by means of a scanning electron microscope. It was found that increasing the temperature from 45 ℃ to 60 ℃ and decreasing the nozzle diameter from 150 μm to 50 μm had an increasing effect on the average particle size, while increasing the spray distance led to a decrease in the average particle size at a constant pressure of 34.5 MPa and temperature of 45 ℃. With 0.5 wt% of PAc-β-CD, the capillary nozzle of short length (5 mm) and small ID (50 μm) gave the smallest size (165 nm). The obtained nanoparticles showed increased dispersity and solubility in oil. The oil suspension of the inclusion complex showed increased sustainability, which can increase the in-vitro controlled release time of the drug.

Physical Properties and Cleaning Ability of Fluoride-Type Cleaning Agents Alternative to Ozone Destruction Substances (오존파괴물질 대체 불소계 세정제의 물성 및 세정성 평가연구)

  • Park, Ji Na;Kim, Eun Jung;Jung, Young Woo;Kim, Honggon;Bae, Jae Heum
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.129-139
    • /
    • 2005
  • Fluoride-type cleaning agents such as TFEA (2,2,2-trifluoroethanol) and HFE (hydrofluoroether) are noticed to be next generation cleaning agents alternative to CFCs since they do not destruct ozones in the stratosphere due to no containment of chloride in the molecule, have lower global warming potential compared to HFCs and HCFCs, and are thermally stable compounds. Thus, the physical properties and cleaning agents were measured and compared with those of CFC-113, 1,1,1-TCE and HCFC-141b which are ozone destruction substances. They were also compared and evaluated with those of IPA and methanol which are currently employing as alternative cleaning agents. And TFEA-based cleaning agents consisted of TFEA and alcohols or HFEs were formulated, their physical properties and cleaning abilities were measured and their utilization as alternative cleaning agents was evaluated. As a result, TFEA and HFEs have lower cleaning ability for their removal of various soils compared to chloride-type cleaning agents, but theyshow excellent cleaning ability for Fluoride-type soils. And it is observed that the formulated cleaning agents of TFEA and alcohols or HFEs caused to increase cleaning ability of flux and unsoluble cutting oil more than 100% compared to their individual component. Therefore, the fluoride-type cleaning agents are expected to be utilized for development of environmental-friendly non aqueous cleaning agents with excellent cleaning ability if they are formulated with proper solvents or additives.

  • PDF

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

Study on Crude Oil Productions and its practice with Rice hull As Treated in Various Supercritical Solvents on Application of Liquefaction Technology (Liquefaction technology 적용 시 왕겨를 이용한 Crude oil 생산 및 적용 연구)

  • Shin, JoungDu;Baek, Yi;Hong, Seung-Gil;Kwon, Soon-Ik;Park, Woo-Kyun;Park, SangWon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.110-118
    • /
    • 2010
  • Supercritical treatment of liquefaction technology for rice hull was investigated the biomass conversion rate and evaluated its crude oil in respect to feasibility of burner in order to heat the green house. The reaction was carried out in a 5,000 mL liquefaction system with dispenser and external electrical furnace. Raw materials (160 g) of rice hull and 3,000 mL of different solvents were fed into the reactor. It was observed that the maximum crude oil yield was about 84.4 % with 1-butanol. The calorific value of crude oil from ethanol solvent were 7,752 kcal/kg. Furthermore, in case study of co-solvent with ethanol and bulk-glycerol, it observed that more than 80 % of rice hull was decomposed and liquefied in its solvent at $315{\sim}326^{\circ}C$ for 30 min. For the development of applicable bio-fuel from rice hull, it was considered that its feasibility is necessary to be carried out for co-solvent soluble portions. Regarding to utilize the crude oil into burner as fuel, it was observed that its calorific value was lower at approximately 24 % than the diesel. Also, flame length from crude oil at lower temperature was decreasing due to incomplete incineration. The temperature of warm wind on the burner was maintained between 63 and $65^{\circ}C$, and the temperature of emission line was appeared at $350{\sim}380^{\circ}C$.

Technology for the Preparation of Ash-free Coal from Low Rank Coal(LRC) (저등급 석탄으로부터 초청정석탄 제조 기술)

  • Lee, Sihyun;Kim, Sangdo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.443-450
    • /
    • 2008
  • Efficient use of low rank coals (LRC) have been investigated as a method to cope with recent high oil price. Among the coals used in industry, lignite and sub-bituminous coals are belong to the LRC, and have abundant deposit and are distributed worldwide, but high moisture contents and self ignition properties inhibits their utilization. In this paper, chemical coal cleaning to produce ash-free coal from LRC has been investigated. Two technologies, that is, UCC(Ultra Clean Coal) process removing ash from coal and Hyper Coal process extracting combustibles from coal were compared with. UCC process has merits of simple and reliable when it compared with Hyper Coal process, but the remaining ash contents werehigher than Hyper Coal. Hyper Coal has ash contents under the 200ppm when raw coal is treated with appropriate solvent and ion exchange materials to remove alkali materials in extracted solution. The ash-free coal which is similar grade with oil can be used as alternate oil in the industry, and also used as a high grade fuel for IGCC, IGFC and other advanced combustion technology.

A design and implement vehicle similar oil identification and quantitative gas (자동차 유사석유제품 및 정량주유 판별 시스템의 설계 및 구현)

  • Jeong, Da-Woon;Baek, Sung-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.281-284
    • /
    • 2011
  • Recently, many drivers was the damage caused by similar oil product sales and gas station by not using quantitative gas. so, these damages is expected to rise damages by increasing these problem. By using similar oil products, caused damage in the fuel lines' working of lubrication and self-cleaning function for the occurred trouble in the part of the early obsolescence and the accumulation of impurities in the fuel lines, combustion rate due to the difference between retail gasoline engine, the burden of weight, Toxic substances in exhaust emissions, engine oil and unresolved issue is the chemical reaction can occur. to prevent these damages, using the system use in-vehicle state data with OBD-II protocol and measure quantitative gas and similar oil. In this paper, there implement similar oil identification and quantitative gas system through OBD-II scanner to provide WiFi communcation by using WinCe development Board.

  • PDF

Application of Exergy in Aquatic Ecosystems Health Assessment : Experimental Approach and Field Observations (수계 생태계의 건강성 평가 척도로서의 엑서지 적용성에 관한 연구: 실험 및 야외 관찰)

  • Silow, Eugene A.;Oh, In-Hye
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.117-123
    • /
    • 2003
  • The results of field experiments with mesocosms on Lake Baikal, containing natural plankton assemblage, and laboratory experiments with microcosms containing Daphnia magna and Chlorella vulgaris demonstrated decrease of the structural exergy of the communities after the addition of allochtonous compounds peptone, diesel oil, o-diphenol, $CdCl_2$ to mesocosmsassemblage, phenol, $CoCl_2$ and $CuSO_4$ to micro-cosms. Structural exergy changes were more expressed than changes of components biomasses and total biomass of the community. Comparison of exergy content for benthos in cleanand affected by the discharges of Baikalsk Pulp and Paper Combine also showed sufficient docrease of structural exergy in polluted area. It points to the possibility of the use of structural exergy as ecosystem health reflecting parameter.

Upstream Risks in Domestic Battery Raw Material Supply Chain and Countermeasures in the Mineral Resource Exploration Sector in Korea (국내 배터리원료광종 공급망 업스트림 리스크와 광물자원탐사부문에서의 대응방안)

  • Oh, Il-Hwan;Heo, Chul-Ho;Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.399-406
    • /
    • 2022
  • In line with the megatrend of 2050 carbon neutrality, the amount of critical minerals used in clean-energy technology is expected to increase fourfold and sixfold, respectively, according to the Paris Agreement-based scenario as well as the 2050 carbon-neutrality scenario. And, in the case of Korea, in terms of the battery supply chain used for secondary batteries, the midstream that manufactures battery materials and battery cell packs shows strength, but the upstream that provides and processes raw materials is experiencing difficulties. The Korea Institute of Geoscience and Mineral Resources has established a strategy to secure lithium, nickel, and cobalt and is conducting surveys to respond to the upstream risk of these types of battery raw materials. In the case of lithium, exploration has been carried out in Uljin, Gyeongsangbuk-do since 2020, and by the end of 2021, the survey area was selected for precision exploration by synthesizing all exploration data and building a 3D model. Potential resources will be assessed in 2022. In the case of nickel, the prospective site will be selected by the end of 2022 through a preliminary survey targeting 10 nickel sulfide deposits that have been prospected in the past. In the case of cobalt, Boguk cobalt is known only in South Korea, but there is only a record that cobalt was produced as a minor constituent of hydrothermal deposit. According to the literature, a cobalt ore body was found in the contact area between serpentinite and granite, and a protocol for cobalt exploration in Korea will be established.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.