• Title/Summary/Keyword: 오염 물질 확산

Search Result 454, Processing Time 0.022 seconds

Variability Of Tidal Range At Inchon (인천의 조차 변동)

  • Hahn, Sangbok
    • 한국해양학회지
    • /
    • v.15 no.2
    • /
    • pp.123-128
    • /
    • 1980
  • Variabilities of tidal range at Inchon were described based on observed values. Relationships between tidal ranges and harmonic costants of tide were also examined. Fortnightly variation is predominant and its range is 571.3cm. Mean of maximum spring range(ΔH/sun max/) is 887.2cm and that of minimum neap range(ΔH/sun min/) is 315.9cm. Mean tidal range(ΔH) is 634.3cm. Diurnal inequality is shown about 141cm on an average and monthly inequality is also shown about 100cm. Yearly inquality appears with a range of about 35cm, maxima in March and September, and minima in June and December. There may exist 18 1 years periodicity with a range of about 45cm. There are some relationships between ridal ranges and amplitudes of M$\_$2/ and S$\_$2/, such as ΔH=2.172 H$\_$m/, ΔH$\_$max/=3.043 H$\_$m/, ΔH$\_$min/=1.071 H$\_$m/, ΔH$\_$max/=2.198 (H$\_$m/ + H$\_$s/), and ΔH$\_$min/=1.740 (H$\_$m/ - H$\_$s/).

  • PDF

Development of Grid Reconstruction Method to Simulate Drying/Wetting in Natural Rivers (II): Model Application and Comparison (자연하천에서 마름/젖음 처리를 위한 격자재구성 기법의 개발 (II): 모형의 적용 및 비교.검토)

  • Choi, Seung-Yong;Kim, Sang-Ho;Hwang, Jae-Hong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.989-1004
    • /
    • 2009
  • The objective of this study is to examine validation of Grid Reconstruction Method, which is developed to simulate drying/wetting in complex natural rivers with wetting and drying domain areas. To verify application of the developed model, the model was applied to natural rivers with wetting and drying domain areas such as Han river and Nakdong river. The simulation results have shown good agreements with observed data and the results for the developed model were more accurate and improved stability of numerical computation than those of RMA-2 model. If the analysis of contaminant advection-diffusion and sediment transport are performed with the study results, the results can be effectively applied to river flow analysis and ecological hydraulics.

Immobilization of Recombinant Bacterial Biosensors: a Simple Approach for the On-Site Detection of Phenolic Compounds (재조합 박테리아 바이오센서의 고정화: 페놀계 화합물의 현장 검출을 위한 간단한 접근 방법)

  • Shin, Hae-Ja
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1323-1328
    • /
    • 2011
  • We herein report the development of an agarose-gel-immobilized recombinant bacterial biosensor simple system for the field monitoring of phenolic compounds. Escherichia coli cells harboring the pLZCapR plasmid, which was previously designed to express the ${\beta}$-galactosidase reporter gene in the presence of phenolic compounds, were co-immobilized with a substrate [chlorophenol red ${\beta}$-galactopyranoside (CPRG) in agarose gel, and dispensed to the wells of a 96-well plate. Field samples were added to the wells and color development was monitored. In the presence of 5 ${\mu}M$ to 10 mM of phenol, the biosensor developed a red (representing hydrolysis of CPRG) color. Other phenolic compounds were also detected by this immobilized system, with the pattern resembling that previously reported for the corresponding non-immobilized biosensor. The immobilized cells showed optimum activity when the gel was simultaneously supplemented with 6% dimethyl formamide (DMF), 0.1% SDS and 10 mM $CaCl_2$. The immobilized biosensor described herein does not require the addition of a substrate or the use of unwieldy instruments or sample pretreatments that could complicate field studies.

A Study on the Application of Adsorption Function in Metal Filter for the Removal of VOCs in Underground Facilities (지하시설 VOCs 제거를 위한 메탈 필터의 흡착기능부여 연구)

  • Jang, Younghee;Lee, Sang Moon;Yang, Heejae;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.633-638
    • /
    • 2019
  • Indoor air quality underground facilities are not equipped for the removal of volatile organic compounds (VOCs) and they are usually treated by diffusion methods such as ventilation. In this study, an adsorption filter was prepared using various coating methods such as carbon nano fiber (CNF) and dip coating. As a result, the adsorption performance was improved by 2 to 20 times or more compared to that of using the metal foam support. This is maybe due to the enhancement of pore distribution which was confirmed by SEM. In addition, the adsorption performance was 13.95 mg/g by adding lignin, and also an average adsorption performance of 13.25 mg/g was maintained after washing indicating that a highly durable adsorption filter material was prepared. It can be suggested that the developed adsorption filter material can be a potential solution that can fundamentally control VOCs, not via the concentration reduction of mechanical ventilation in underground facilities.

Characterization of Atmospheric Dispersion Pattern from Large Sources in Chungnam, Korea (충남지역 대형사업장의 대기오염물질 확산 특성 파악)

  • Choi, Woo Yeong;Park, Min Ha;Jung, Chang Hoon;Kim, Yong Pyo;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.55-69
    • /
    • 2021
  • Chungnam region accounts for the largest SOX (22.8%) emission with the second-largest NOX (10.8%) emission in Korea due to the integration of many large industrial sources including a steel mill, coal-fired power plants, and petrochemical complex. Air pollutants emitted by large industrial sources can cause harmful problems to humans and the environment. Thus, it is necessary to understand dispersion patterns of air pollutants from large industrial sources in Chungnam to characterize atmospheric contamination in Chungnam and the surrounding area. In this study, seasonal atmospheric dispersion characteristics for SOX, NOX, and PM2.5 from ten major point sources in Chungnam were evaluated using HYSPLIT 4 model, and their contributions to SO2, NO2 concentrations in the regions near the source areas were estimated. The predictions of the HYSPLIT 4 model show a seasonal different dispersion pattern, in which air pollutants were dispersed toward the southeast in winter while, northeast in summer. In summer, due to weaker wind speed, air pollutants concentrations were higher than in winter, and they were dispersed to the metropolitan area. The local emissions of air pollutants in Taean area had a greater influence on the ambient SO2 and NO2 concentrations at Taean, whereas SOX and NOX emissions from large sources located at Seosan showed relatevely little effect on the ambient ambient SO2 and NO2 concentrations at Seosan.

Design of particulate matter reduction algorithm by learning failure patterns of PHM-based air conditioning facilites

  • Park, Jeong In;Kang, Un Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.83-92
    • /
    • 2022
  • In this paper, we designed an algorithm that can control the state of PM by learning the chain failure pattern of PHM based air conditioning facility. It is an inevitable spread of PM due to the downtime caused by the failure of the air conditioning facility. The algorithm developed by us is to establish a PM management system through PHM, and it is an algorithm that maintains a constant stabilization state through learning the stop/operation pattern of the air conditioner and manages PM based on this. As a result of the simulating at a subway station for the performance qualification of the algorithm, it was verified that the concentration of PM reduces by 30% on average. In the case of stations with many passengers using the subway, the concentration of PM exceeded the Ministry of Environment Standards(100 ㎍/m3), but it was verified that the concentration of PM was improved at all stations where the simulation was conducted. In the future research is to expand the system to comprehensively manage not only PM but also pollutants such as CO2, CO, and NO2 in subway stations.

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Prediction of Adsorption Isotherms and Diffusivity on Activated Carbon for Persistent Organic Pollutant(2,3,7,8-TCDD) (활성탄 위에서 잔류성 유기 오염물질(2,3,7,8-TCDD)의 등온 흡착식 및 확산계수 예측)

  • Lim, Young-Il;Son, Hae-Jeong;Lee, Ohsung;Nam, Kyong-Soo;Yoo, Kyoung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.747-754
    • /
    • 2009
  • In this study, adsorption isotherms of o-DCB(ortho-dichlorobenzene) on an activated carbon heated at $1000^{\circ}C$ for 24 hours were obtained by experiment and were predicted by using molecular simulation. The initial molecular structure of the activated carbon was designed on the basis of its molecular formula and functional groups ratio measured experimentally. Then, the molecular structure was optimized using the COMPASS(condensed-phase optimized molecular potentials for atomistic simulation studies) force field. The particle porosity, specific surface area, and particle density obtained from the optimized molecular structure of activated carbon were compared with those experimental data. The errors between experimental data and simulation results of the particle porosity, specific surface area, and particle density were shown as 7.6, 3.8, and 2.8%, respectively. Adsorption isotherms constants of o-DCB are calculated by the GCMC(grand canonical Monte Carlo) method in the optimized molecular structure of activated carbon. The simulation result of the adsorption isotherms showed an error of under 3%, compared to that of experimental data. Adsorption isotherms, adsorption heat and pore diffusivity of 2,3,7,8-TCDD(tetrachlorodibenzo-p-dioxin) was finally obtained in the same molecular structure of the activated carbon as used for o-DCB. Thus, adsorption characteristics of persistent organic pollutants on activated carbon, which are not easy to experimentally evaluate, are predicted by the molecular simulation.