• Title/Summary/Keyword: 오염물질

Search Result 6,002, Processing Time 0.032 seconds

Fog Collection/Removal System Using a Moss Filter (이끼필터를 이용한 안개 포집/제거 시스템)

  • Oh, Sunjong;Park, Minyong;Kim, Wandoo;Lim, Hyuneui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.449-455
    • /
    • 2016
  • Fog causes economic losses in transportation. It also results in health problems when it is combined with air pollutants. Considerable research efforts have focused on developing fog removal systems. However, most systems operate themselves after monitoring the fog. Additionally, continuous energy supply and maintenance are required to retain the fog-removal efficiency of the system. This study included the demonstration of a moss filter (a polyolefin mesh interlaced with moss) as a fog-removal method overcoming the limitations of the fog removal system. Three types of mosses with different surface structures were investigated to elucidate the relation between the moisture absorption rate and the structures. Among the different moss types, Hypopterygium japinicum showed the highest efficiency based on the smallest pore diameter and the largest total pore area. The visibilities with the moss filter and the polyolefin mesh were compared to perform the fog removal tests. The moss filter could provide a cost-effective and eco-friendly fog removal system with sustainability.

Understanding of Functional Foods for Nutritional Skin Care (피부 미용을 위한 기능성 식이 소재의 이해)

  • Kim Juyoung;Kim Hyunae;Park Kyungho;Cho Yunhi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.313-320
    • /
    • 2004
  • Human skin is continuously exposed to internal and external influences that may affect its condition and functioning. To maintain and improve skin condition, a wide variety of skin-care products is in the market. However, many of skin problems originate from internal causes, and the new insight into the relation between nutritional factors and skin is now receiving a great attention. Specific positive effects of nutrients or nutraceutical compounds on skin conditions may prove to be biologically relevant and may consequently allow for claims on products containing these compounds, resulting in the development of new functional food for optimal skin condition. In this review, these functions of nutrients and nutraceutical compounds in skin are summarized as providing a basis for the feasibility of the concept of functional foods for maintaining and improving skin condition.

Forest Environment Degradation and Rehabilitation of Copper Mine Area in Ashio, Japan (일본 아시오(足尾) 銅鑛山地域의 삼림황폐와 삼림환경 복구사업에 관한 분석)

    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.3
    • /
    • pp.276-285
    • /
    • 2001
  • This report surveyed degradation of forest environment and rehabilitation in Ashio of Japan. Since 1880, a large scale forestry in this area has been destroyed by sooty smoke, and the local government invested heavily to rehabilitate the damaged forestry and denuded mountains. These degradations are due to complex operations, such as sulfurous acid gas from copper refinery, forest fires, steep slope and disadvantageous climate. The rehabilitation works on degraded forestry(2,399ha) were undertaken by tree planting fur three years from 1897. However, forest degradation and disasters were continued, and the total damaged areas were about 2,400~3,000ha in 1956. A Manual labor method, a Helicopter method and also Combination of manual labor and helicopter method had been adopted to rehabilitation works from 1945 to 1996, while 828.19ha of the degraded mountains was rehabilitated. Total investment for those projects was 80 billion yen. A debris control dam, a soil arresting structure, a vegetation-block, a vegetation sack measures and tree planting have implemented significantly fur the method of rehabilitation. An objective of manual labor works is a complete rehabilitation on each place through 3 stage working. The revived green areas accounted fur 49% of the total, and the entire afforest areas are less than 10%. In coming 25 years, an amount of 21.3 billion yen will be invested to rehabilitate 564ha of degraded mountain lands. However, it is impossible to estimate that how long it will take until the whole degraded mountain lands are completely rehabilitated. Rehabilitation works in Ashio may be applicable to environmental restoration and revegetation in the abandoned coal-mine lands of Korea.

  • PDF

Characteristics of Strong Alkaline Electrolyzed Water Produced in All-in-one Electrolytic Cell (일체형 전해조에서 생산된 강알카리성 전해수의 특성)

  • Lee, Ho Il;Rhee, Young Woo;Kang, Kyung Seok
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.446-450
    • /
    • 2012
  • Strong alkaline electrolyzed water which is produced in cathode by electrolyzing the solution where electrolytes (NaCl, $K_2CO_3$ etc.) are added in diaphragm electrolytic cell, is eco-friendly and has cleaning effects. So, it is viewed as a substitution of chemical cleaner. In addition, strong alkaline electrolyzed water is being used by some Japanese automobile and precision parts manufacturing industries. When strong alkaline electrolyzed water is produced by using diaphragm electrolytic cell, it is necessarily produced at the anode side. Since strong acidic electrolyzed water produced is discarded when its utilization cannot be found, production efficiency of electrolyzed water is consequently decreased. Also, there is a weakness electrolytic efficiency is decreasing due to the pollution of diaphragm. In order to overcome this, non-diaphragm all-in-one electrolytic cell integrated with electrode reaction chamber and dilution chamber was applied. Strong alkaline electrolyzed water was produced for different composition of electrolytes, and their properties and characteristics were identified. In comparing the properties between strong alkaline electrolyzed water produced in diaphragm electrolytic cell and that produced in all-in-one electrolytic cell, the differences in ORP and chlorine concentration were found. In emulsification test to confirm surface-active capability, similar results were obtained and strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell was identified to be useable as a cleaner like strong alkaline electrolyzed water produced in diaphragm electrolytic cell. Strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell is thought to have sterilizing power because it has active chlorine which is different from strong alkaline electrolyzed water produced in diaphragm electrolytic cell.

A Survey on Characteristics of Distribution for Indoor Air Pollutants in Museum Environments (박물관내 실내공기오염물질의 분포 특성 실태조사)

  • Kim, Yoon-shin;Roh, Young-man;Yoon, Young-hun;Lee, Cheol-min;Kim, Ki-yeon;Kim, Jong-cheol;Jeon, Hyoung-jin;Sim, In-suk
    • 보존과학연구
    • /
    • s.28
    • /
    • pp.91-104
    • /
    • 2007
  • The goal of this study was to provide basic data for arrangement of management in museum environment. We investigated characteristics of distribution on indoor air pollutants at exhibition halls and storages in museums between July and August, 2007. The monitoring carried out at three cultural sites, Pusan, Daejeon and Kyungjoo which is possessed their own exhibition hall and storage in Museums. We adopt the several pollutants for this survey such as $PM_{10}$, $PM_{2.5}$ $CO_2$, Formaldehyde, TBC, CO, $NO_2$, Rn, VOCs, $O_3$ and followed the standard method of Ministry of Environment, Korea for sampling and analysis, respectively. The results of this survey revealed that average concentration of $PM_{10}$ and $PM_{2.5}$ in storages were $117.3{\mu}g/m^3$ and $92.6{\mu}g/m^3$, respectively. The average concentration in storages of gases pollutants and microorganism such as $CO_2$, Formaldehyde, $NO_2$, Rn, TVOC, $O_3$, and TBC showed as: 788.8ppm, $30.7{\mu}g/m^3$, 0.4ppm, 6.4ppb, $1.3pCi/{\ell}$, $1,374.9{\mu}g/m^3$, 2.4ppb, and $119.4cfu/m^3$, respectively. In addition, average concentration of $PM_{10}$ and $PM_{2.5}$ in exhibition halls were $49.5{\mu}g/m^3$ and $56.1{\mu}g/m^3$, respectively. The average concentration in exhibition halls of gases pollutants and microorganism such as $CO_2$, Formaldehyde, $NO_2$, Rn, TVOC, $O_3$, and TBC showed as: 475.2ppm, $94.1{\mu}g/m^3$, 0.3ppm, 12.4ppb, $0.3pCi/{\ell}$, $1,179.1{\mu}g/m^3$, 5.2ppb, 2.4ppb, and $24.8cfu/m^3$, respectively.

  • PDF

Cluster and Factor Analyses Using Water Quality Data in the Sapkyo Reservoir Watershed (삽교호유역의 수질자료를 이용한 군집분석 및 요인분석)

  • Im, Chang-Su;Sin, Jae-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.149-159
    • /
    • 2002
  • The monthly water quality data measured at 19 stations located in the Sapkyo reservoir watershed were clustered into 2 to 7 clusters and factor analysis was conducted to characterize the water quality, using the information obtained from cluster analysis. The result of cluster analysis shows that Sapkyo reservoir and each stream (Sapkyo stream, Muhan stream and Kokkyo stream) in Sapkyo reservoir watershed hove their own water quality characteristics. The result of water quality analysis indicates that the concentration of suspended solids from Sapkyo reservoir is much higher than those of other streams, and which is probably because of increment of phytoplankton biomass with rich nutrient flowing Into Sapkyo reservoir from the upper stream of watershed. Furthermore, the concentrations of biochemical oxygen demand and chemical oxygen demand were 3.5 to 4.8 times and 1.7 to 2.5 times those of other streams, respectively. The overall water quality of Sapkyo reservoir watershed was considered to exceed eutrophic condition. Based on factor analysis, the water quality characteristics of Sapkyo stream and Muhan stream were closely related with farm land and residence. The water quality of Kokkyo stream was influenced by superabundant organic matter flowing from Chonan city and district wastewater treatment plant located in the upper stream of Kokkyo stream. The water quality factor influencing Sapkyo reservoir was closely related with water quality factors of other three streams.

Flow Rate·Water Quality Characteristics of Tributaries and a Grouping Method for Tributary Management in Nakdong River (낙동강 지류·지천의 유량·수질 특성 및 하천관리를 위한 등급화 방안 연구)

  • Na, Seungmin;Lim, Tae Hyen;Lee, Jae Yun;Kwon, Heongak;Cheon, Se Uk
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.380-390
    • /
    • 2015
  • In this study, the major 38 tributaries in Nakdong River were monitored for flow rate and water quality in order to understand the characteristics of the watershed and to find improvement plan. The flow rate and water quality for each target tributary were evaluated based on the monitoring data in 2013~2014 using a statistical package SPSS-22.0. In addition, the tributary grouping method was conducted using a $BOD_5$ concentration/flowrate and TP concentration/flowrate monitoring data. The average values of $BOD_5$, $COD_{Mn}$, TP and TOC concentrations in Gumicheon, Gyeonghocheon, Jincheoncheon, Gisegokcheon, Yonghacheon and Yonghocheon located at Nakdong Waegwan and Nakdong Goryung watershed were high and in the grade of III or IV (5~8 mg/L). The Pearson correlation coefficients of TOC with $BOD_5$, $COD_{Mn}$, and TP were greater (r=0.8, p<0.01) than those of the other water quality parameters (12 species). The tributaries with high values of water quality parameters ($BOD_5$ > 3.0 mg/L, TP > 0.1 mg/L) and flowrate (Q > $0.1m^3/sec$) were selected for improving water quality according to the stream grouping method. Five tributaries (Gumicheon, Gisegokcheon, Yonghacheon, Yeongsancheon, Mijeoncheon and Yonghocheon) were classified as Group I, which require polices and plans for water quality improvement.

Water Quality Analysis of Hongcheon River Basin Under Climate Change (기후변화에 따른 홍천강 유역의 수질 변화 분석)

  • Kim, Duckhwan;Hong, Seung Jin;Kim, Jungwook;Han, Daegun;Hong, Ilpyo;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.348-358
    • /
    • 2015
  • Impacts of climate change are being observed in the globe as well as the Korean peninsula. In the past 100 years, the average temperature of the earth rose about 0.75 degree in celsius, while that of Korean peninsula rose about 1.5 degree in celsius. The fifth Assessment Report of IPCC(Intergovermental Panel on Climate Change) predicts that the water pollution will be aggravated by change of hydrologic extremes such as floods and droughts and increase of water temperature (KMA and MOLIT, 2009). In this study, future runoff was calculated by applying climate change scenario to analyze the future water quality for each targe period (Obs : 2001 ~ 2010, Target I : 2011 ~ 2040, Target II : 2041 ~ 2070, Target III : 2071 ~ 2100) in Hongcheon river basin, Korea. In addition, The future water quality was analyzed by using multiple linear regression analysis and artificial neural networks after flow-duration curve analysis. As the results of future water quality prediction in Hongcheon river basin, we have known that BOD, COD and SS will be increased at the end of 21 century. Therefore, we need consider long-term water and water quality management planning and monitoring for the improvement of water quality in the future. For the prediction of more reliable future water quality, we may need consider various social factors with climate components.

Pervaporation Separation of MTBE-Methanol Mixtures Using PVA/PAA Crosslinked Membranes (가교된 PVA/PAA 막을 이용한 MTBE-Methanol 혼합물에 대한 투과증발분리)

  • 임지원;김연국
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.235-242
    • /
    • 1998
  • Pervaporation separation of methyl tert-butyl ether (MTBE) and methanol (MeOH) mixture, of which the former compound is well known as the octane booster was carried out. Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(acrylic acid) which have been successfully applied on the water-alcohol mixtures were used in this study. The PVA/PAA ratio in the crosslinked membranes was 95/5, 90/10, 85/15, 80/20, and 75/25 by weight. The operating temperatures were 30, 40, and 50$\circ$C, and the compositions of MTBE and MeOH to be separated were 95/5, 90/10, and 80/20 (MTBE/MeOH) solutions. PVA/PAA=85/15 membrane showed the separation factor $\alpha_{MeOH/MTBE}$=4000 and the permeation rate of 10.1 g/m$^2$hr for MTBE/MeOH=80/20 solution at 50$\circ$. When the same membrane was used, the separation factor and permeation rate for MTBE/MeOH=90/10 solution at 40$\circ$C were $\alpha_{MeOH/MTBE}$=6000 and 8.5 g/m$^2$hr, respectively. Also, the hydrophilic/hydrophobic balance of the membranes would take an important role in the relationships between the membranes and separation performances in terms of the flux and the separation factor.

  • PDF

A Regional Source-Receptor Analysis for Air Pollutants in Seoul Metropolitan Area (수도권지역에서의 권역간 대기오염물질 상호영향 연구)

  • Lee, Yong-Mi;Hong, Sung-Chul;Yoo, Chul;Kim, Jeong-Soo;Hong, Ji-Hyung;Park, Il-Su
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.591-605
    • /
    • 2010
  • This study were to simulate major criteria air pollutants and estimate regional source-receptor relationship using air quality prediction model (TAPM ; The Air Pollution Model) in the Seoul Metropolitan area. Source-receptor relationship was estimated by contribution of each region to other regions and region itself through dividing the Seoul metropolitan area into five regions. According to administrative boundary, region I and region II were Seoul and Incheon in order. Gyeonggi was divided into three regions by directions like southern(region III), northern(IV) and eastern(V) area. Gridded emissions ($1km{\times}1km$) by Clean Air Pollicy Support System (CAPSS) of National Institute of Environmental Research (NIER) was prepared for TAPM simulation. The operational weather prediction system, Regional Data Assimilation and Prediction System (RDAPS) operated by the Korean Meteorology Administration (KMA) was used for the regional weather forecasting with 30km grid resolution. Modeling period was 5 continuous days for each season with non-precipitation. The results showed that region I was the most air-polluted area and it was 3~4 times more polluted region than other regions for $NO_2$, $SO_2$ and PM10. Contributions of $SO_2$ $NO_2$ and PM10 to region I, II and III were more than 50 percent for their own sources. However region IV and V were mostly affected by sources of region I, II and III. When emissions of all regions were assumed to reduce 10 and 20 percent separately, air pollution of each region was reduced linearly and the contributions of reduction scenario were similar to those of base case. As input emissions were reduced according to different ratio - region I 40 percent, region II and III 20 percent, region IV and V 10 percent, air pollutions of region I and III were decreased remarkably. The contributions to region I, II, III were also reduced for their own sources. However, region I, II and III affected more regions IV and V. Shortly, graded reduction of emission could be more effective to control air pollution in emission imbalanced area.