• Title/Summary/Keyword: 오리피스 길이

Search Result 55, Processing Time 0.022 seconds

Effects of Orifice Length on Helmholtz Resonator (음향공 오리피스 길이 변화에 따른 감쇠 효과)

  • Song, Jae-Gang;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.36-39
    • /
    • 2008
  • Combustion instability is one of the most difficult problems in the development of liquid rocket engines. One of the damping devices for combustion instability is helmholtz resonator. Orifice length is one of factors for designing it. In this study, effects of orifice length are investigated by an experimental tests and a linear acoustic analysis. Damping capacity was improved by the increase of the length of resonator. And the results of an experimental tests and a linear acoustic analysis are showed similar tendency. Also, effects of supplied SPL(sound pressure level) are investigated and the results show that nonlinear effects are increase by the increase of supplied SPL.

  • PDF

Study on the Energy Separation Characteristics of the $100Nm^3$/hr Level Vortex Tube ($100Nm^3$/hr급 볼텍스튜브의 온도 분리 특성 연구)

  • Kim, Chang-Su;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.996-999
    • /
    • 2010
  • 고압의 가스를 이용하여 고온 가스와 저온 가스를 분리하거나 입자상 물질의 분리에 사용할 수 있는 장치인 볼텍스 튜브의 에너지 분리 특성을 파악하기 위하여 $100Nm^3$/hr급 볼텍스 튜브를 제작하고 이에 대한 실험을 진행하였다. 저온측의 유량비와 오리피스 직경 및 볼텍스 튜브의 길이가 온도에 미치는 영향을 분석하였다. 오리피스 직경 0.6D에서 최적의 온도 분리 효과를 나타내었으며, 0.8D의 경우 그 효과가 미미하였다. 또 한 오리피스 직경이나 길이에 관계없이 저온유량비가 약 0.9부근에서 고온측의 온도가 최고점을 나타내었고, 볼텍스 튜브 길이는 저온측 온도 변화에 미미한 영향을 미치나, 오리피스 직경의 변화는 최저 온도점이 나타나는 저온 유량비에 상당한 영향을 미쳤다. 본 연구의 결과는 $100Nm^3$/hr급 볼텍스 튜브의 최적화를 위한 기초자료로 활용될 수 있을 것이다.

  • PDF

An Experimental Study of the High-Speed Rotating Fuel Injection System with In-line Injection Orifice (직렬식 분무오리피스를 적용한 회전 연료분사노즐의 분무특성연구)

  • Jang, Seong-Ho;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.202-206
    • /
    • 2009
  • We studied the spray characteristics of the high-speed rotating fuel injection system. The diameter of in-line injection orifices are varied from 1mm to 5mm and the number of in-line injection orifices are varied from 3 to 12. Droplet size, velocity and spray distribution were measured by the PDPA(Phase Doppler Particle Analyzer) system and spray was visualized. From the test results, the liquid column generated from the injection orifice is mainly controlled by the rotational speeds. Also diameter of injection orifices and number of injection orifices have influence on the diameters of droplet. Consequently, we find out that the basic mechanism of controlling the droplet size is the liquid film thickness in the injection orifice.

  • PDF

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows (아음속 유동장에 수직분사시 오리피스 내부유동 효과에 대한 연구)

  • 김정훈;안규복;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.28-39
    • /
    • 2003
  • Effects of the orifice internal flow such as cavitation and hydraulic flip on transverse injection into subsonic crossflows have been studied. The liquid column breakup length and the liquid column trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance, and were compared with previous results. It is found that cavitation bubbles, which occur inside the sharp-edged orifice, make the liquid jet very turbulent and especially in the orifices with L/d = 5 hydraulic flip appear as cavitation bubbles are emitted from the orifice. The breakup length is shorter as cavitation bubbles grows and hydraulic flip appears. However, the liquid column trajectories normalized by the effective diameter and the effective momentum ratio have a similar tendency irrespective of cavitation and hydraulic flip.

Damping Characteristic of Helmholtz Resonator according to Its Geometry and Sound Pressure Level (헬름홀쯔 공명기의 기하학적 형상과 가진 음압에 따른 감쇠 특성)

  • Song, Jae-Kang;Kim, Ki-Woo;Chae, Byoung-Chan;Ko, Young-Sung;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.966-972
    • /
    • 2010
  • Damping characteristics of a Helmholtz resonator to passively control the combustion instability were investigated by linear acoustic analysis and atmospheric acoustic tests. Its orifice length and diameter were selected as the design parameters and supplied SPL(sound pressure level) effect on damping characteristics were investigated. Damping capacity is improved by decreasing the orifice length as well as by increasing the orifice diameter. Also, the results showed that the damping capacity of the resonator decreased nonlinearly about above 110 dB and instabilities in the nonlinear region were more effectively suppressed by increasing the orifice diameter.

Spray Characteristics of Impinging Injectors in Crossflows (횡방향 유동에서 충돌형 분사기의 액체제트 분무 특성)

  • Song, Yoonho;Lee, Woongu;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.949-952
    • /
    • 2017
  • Spray characteristics of the impinging injectors in subsonic crossflows were experimentally studied and compared with the plain-orifice injectors. By changing the impingement angle (60, 90, 120) which is the same orifice length to diameter ratio (L/d = 5), spray characteristics were investigated. In the view of the top view from the impinging injectors, as the impingement angle increases, the liquid column breakup length in the y-direction was decreased. On the other hand, when the impinging injector is viewed from the side view, the breakup length in the x direction is smaller than the previous plain-orifice injectors, which mean that the atomizing performance of the impingement-type injector is better than that of the single-hole orifice.

  • PDF

A Study on the Characteristics of Liquid Jet in Crossflows Using Elliptical Nozzles (타원형 노즐을 이용한 횡단류 유동에서 액체제트 특성 연구)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.320-324
    • /
    • 2017
  • Effect of elliptical orifice on the spray characteristics of liquid jet ejecting into subsonic crossflows were experimentally studied. Circular/elliptical plain-orifice injectors, which had different ratios of the orifice length to diameter and major axis to minor axis, were used for transverse injection. Compared with the previous research, breakup lengths of elliptical nozzles are shorter than circular nozzles at all experimental condition. Cavitation/hydraulic flip are considered as a reduction in the breakup length at all circular/elliptical nozzle. In the case of liquid column trajectories, major axis which was placed to the crossflows, increases the frontal area of the liquid column exposed to the crossflows. Hence, the aerodynamic force exerted on the jet is increased and the penetration depth is reduced.

  • PDF

A Study on Performance of Dual Swirl Injector with Different Recess Length (이중 스월 분사기의 Recess 길이에 따른 성능 평가)

  • 김태한;조남춘;금영탁
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • Swirl injectors have the advantage of stable combustion, high efficiency, and insensibility to variable O/F ratio. Recess length is the length from outer orifice tip to inner orifice tip. It is the very important variable of performance of swirl type injector Recess length have influence on collision, mixing, spray, and combustion of propellants. This study investigated on the engine performance with the change of recess length through CFD, cold flow test, and combustion test. In result, we could confirm the change of engine performance with the change of recess length. And we found that performance forecast process through CFD, cold flow test is the right process through combustion test.

A Study of Spray Characteristic with Orifice Diameter for Single Column Rotating Fuel Nozzle (단열식 회전연료 노즐의 오리피스 직경에 따른 분무특성 연구)

  • Jang, Seong-Ho;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.253-256
    • /
    • 2009
  • In the micro turbojet engine less than 350kw power class, it is not easy to find out the good atomization fuel injector with good spray quality. However conceptually, rotating fuel injection system can give high atomization quality by only the centrifugal force of a high speed rotating shaft of the engine without high-pressure fuel pump. With this motivation, we manufactured very small rotating fuel injector of 40 mm diameter and performed under a variety of injection orifices. We measured droplet size, velocity and spray distribution by the PDPA(Phase Doppler Particle Analyzer) system. Also spray was visualized by using high speed camera. From the test results, we could understand that the length of liquid column from the injection orifice is mainly controlled by the rotational speeds. Furthermore, droplet size(SMD) is decreased with the rotational speeds and is influenced by the diameter of the injection orifice and liquid film thickness.

  • PDF

Experimental Study on Energy Separation Characteristics of Vortex Tube (볼텍스 튜브의 에너지 분리 특성에 대한 실험적 연구)

  • Lee, Jun-Sun;Han, Keun-Hee;Park, Sung-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.517-524
    • /
    • 2011
  • A vortex tube is a device that can separate small particles from a compressed gas or separate a compressed gas into hot and cold flows. We experimentally analyzed the energy-separation characteristics of a vortex tube with a diameter of 10 mm. We measured the energy-separation characteristics of the vortex tube for different inlet air pressures, orifice diameters, and tube lengths. The orifice diameter and inlet pressure are important for the vortex tube design and operation. The tube length has a small effect on the energy-separation performance. Maximum energy separation occurs for a vortex tube with Dc = 0.7 D and L = 16 D.