웨이블릿 변환에 기반한 동영상 코덱에서의 움직임 예측 기법은 OCT 기반 코덱과 유사하게 이전 프레임과의 움직임 예측을 통하여 수행된다. 그러나, 현재 프레임이 이전 프레임을 참조하므로 네트워크상의 전송시 이전 프레임에 발생한 오류가 전달되는 오류 전파의 문제도 발생하게 된다. 본 논문에서는 웨이블릿 변환된 프레임의 특성을 이용하여 최상위 레벨의 LL 부대역만 이전 프레임과의 움직임 예측을 수행하고, 나머지 부대역에 대하여 프레임 내의 상위레벨의 부대역이 하위 부대역을 창조하여 예측 및 보상을 수행하여 오류전파의 가능성을 최소화하는 Inter-Intra ME 동영상 코덱을 제안한다 제안된 움직임 예측을 사용하여 MAD(Mean-Absolute Differences)를 측정한 결과, 프레임간 변화가 심한 경우에는 제안된 기법과 이전 프레임의 부대역을 참조한 기법 사이의 압축율은 유사하게 나타났으며, 변화가 적은 경우에는 이전 프레임을 참조하는 것의 압축율이 높게 나타났다. 그러나, 네트워크 전송시 발생하는 오류전파에는 제안된 기법의 성능이 우수한 것으로 나타났다.
오류역전파 신경망을 인산형 연료전지의 조업변수인 산소 및 수소 유량, 작동온도에 대하여 학습시켜 연료전지 모델을 구성하였다. 또한 구성된 모델을 이용하여 다양한 조업조건에서의 단위전지 성능을 예측하여 이를 실험결과와 비교하였으며, 학습된 신경망을 ASPEN PLUS의 단위공정으로 도입하여 50kW 출력의 연료전지 공정을 구성한 후 조업변수에 대한 영향을 살펴보았다. 3개의 층으로 구성된 오류역전파 신경망은 학습단계상수와 모멘텀이 각각 0.7 및 0.9인 경우 단위전지 성능곡선을 가장 정확히 학습하였으며, 이에 의하여 구성된 신경망 모델은 수소 및 산소의 유량, 온도의 변화에 따른 단위전지 성능곡선의 변화를 정확히 예측하였다. 연료전지 전체공정의 모사에서는 개질기의 경우 $600^{\circ}C$의 상압에서 수증기/탄화수소 비율이 2.6일 때, 연료전지의 경우 작동온도가 190~20$0^{\circ}C$일 때 연료전지의 출력이 최대값을 나타내었으며, 단위전지의 전기화학적 효율은 약 45%, 수소이용률은 약 61%, 발전시스템 전체의 효율은 18%이었다.
본 연구에서는 화강풍화토 지반에 시공된 PHC 매입말뚝의 지지력의 평가를 위해 인공신경망을 적용하였다. 오류역전파 인공신경망의 적용성을 증명하기 위해 168개의 PHC 매입말뚝의 현장시험 데이터가 사용되었다. 연구결과 오류역전파 인공신경망의 말뚝지지력 평가가 동재하시험결과와 잘 일치함을 보여주었으며, 이러한 결과는 인공신경망을 이용한 PHC 매입말뚝의 지지력 평가가 신뢰성이 있음을 보여준다.
웨이블릿 기반 비디오는 DCT 기반 비디오에 비해 전송오류에 더 민감하다. 즉, 어떤 프레임의 부대역에 오류가 발생하면 같은 프레임의 다른 부대역뿐 아니라 그 프레임을 참조하는 이후 프레임의 복원에도 영향을 주어 비디오의 화질이 감소하게 된다. 본 논문에서는 프레임 간 참조를 수행하는 웨이블릿 비디오의 오류 전파를 줄이기 위해 프레임 내 참조 기법을 제안한다. 제안된 기법에서는 LL 부대역을 제외한 나머지 부대역에서 같은 프레임의 하위 부대역을 참조하여 다른 프레임으로의 오류전파를 줄인다. 무선 채널에서의 비트 에러 패턴을 이용하여 모의실험을 수행한 결과 화면의 움직임이 빠른 비디오에서는 제안된 기법의 성능이 압축율에 관계없이 우수하였으며 화면의 움직임이 거의 없는 비디오에서는 비트율이 높은 경우에 성능이 높은 것으로 나타났다.
본 논문은 패턴인식을 위해 사용할 수 있는 감독학습을 이용한 supervised IAFC neural network 1과 supervised IAFC neural network 2를 제안하였다 Supervised IAFC neural network 1과 supervised IAFC neural network 2는 LVQ(Learning Vector Quantization)를 퍼지화한 새로운 퍼지 학습법칙을 사용하고 있다. 이 새로운 퍼지 학습 법칙은 기존의 학습률 대신에 퍼지화된 학습률을 사용하고 있는데, 이 퍼지화된 학습률은 조건 확률을 퍼지화 한 것에 근간을 두고 있다. Supervised IAFC neural network 1과 supervised IAFC neural network 2의 성능과 오류역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, 실험결과 supervised IAFC neural network 2 의 성능이 오류역전파 신경회로망의 성능보다 우수함이 입증되었다.
본 논문은 학습 속도가 계층별 학습처럼 빠르며, 일반화 성능이 우수한 학습 방법을 제안한다. 제안한 방법은 최소 제곡법을 통해 구한 은닉층의 목표값을 이용하여 은닉층의 가중치를 조정하는 방법으로, 은닉층 경사 벡터의 크기가 작아 학습이 지연되는 것을 막을 수 있다. 필기체 숫자인식 문제를 대상으로 실험한 결과, 제안한 방법의 학습 속도는 오류역전파 학습과 수정된 오차 함수의 학습보다 빠르고, Ooyen의 방법과 계층별 학습과는 비슷했다. 또한, 일반화 성능은 은닉노드의 수에 관련없이 가장 좋은 결과를 얻었다. 결국, 제안한 방법은 계층별 학습의 학습 속도와 오류역전파 학습과 수정된 오차 함수의 일반화 성능을 장점으로 가지고 있음을 확인하였다.
정확한 오이의 형상 및 위치를 인식하기 위하여 형상인식 알고리즘에 대한 연구를 수행하였다. 실제 영상에서 오이의 형상과 위치를 판정할 수 있도록 알고리즘을 개발한 결과, 다음과 같은 결론을 얻었다. 오이의 특징형상 검출은 $15{\times}15$ 간격으로 자동검출 되도록 처리하였다. 오이로 인식된 출력패턴 중에서 오검출된 출력패턴의 비율은 0.1~4.2%로 나타났다. 오류역전파 알고리즘은 영상크기를 $445{\times}363$, $501{\times}391$, $300{\times}421$, $450{\times}271$, $297{\times}421$의 크기에 따라 출력패턴을 얻은 결과 영상의 크기에 따른 검출 값의 변화는 없는 것으로 나타났다. 학습패턴 수가 25개로 증가하면 영상에서 다른 패턴을 검출하는 비율이 16.02%로 나타났다. 또한 학습패턴이 2개인 경우 40개의 영상에서 8개의 오이를 검출하지 못하였다. 학습패턴의 수가 7~9개인 경우 오이의 검출이 가장 좋은 것으로 나타났다.
본 논문에서는 진화전략을 이용하여 빠르게 학습하는 새로운 구조의 뉴로퍼지 시스템을 제안하고 제안한 시스템의 효용성을 입증하기 위하여 비선형 시스템 동정에 응용한 결과를 설명한다. 뉴로퍼지 시스템의 학습 방법으로는 지금까지 주로 변형된 오류역전파 알고리즘과 최적화 기법인 유전자 알고리즘이 많이 사용되어왔으나, 오류역전파 알고리즘은 학습시간이 많이 걸리며 유전자 알고리즘은 해를 유전형 형태로 표현함으로 인하여 미세한 탐색이 힘든 단점이 있었다. 본 논문에서 사용한 진화전력은 해를 표현형의 개체로 나타내어 실수형태로 진화하기 대문에 미세한 탐색이 가능하며 오류역전파 알고리즘에 비해 지역해에 빠질 가능성이 작고 속도가 빠른 장점이 있다. 제안한 뉴로퍼지 시스템을 비선형 시스템 동정에 적용한 결과 학습속도가 빠르며 학습결과도 우수함을 보았다.
다층신경망 (MLP: multilayer perceptron)은 다른 패턴인식 방법에 비해 여러 가지 훌륭한 특성을 가지고 있어 음성인식 및 화자인식 영역에서 폭넓게 사용되고 있다. 그러나 다층신경망의 학습에 일반적으로 사용되는 오류역전파 (EBP: error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있으며, 이는 화자인식이나 화자적응과 같이 실시간 처리를 요구하는 응용에서 상당한 제약으로 작용한다. 패턴인식에 사용되는 학습데이터는 풍부한 중복특성을 내포하고 있으므로 패턴마다 다층신경망의 내부변수를 갱신하는 온라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 오류역전파 알고리즘에서는 가중치 갱신 시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 응용에서 상당한 속도개선을 얻을 수 있지만, 학습률이 고정된 상태에서는 학습이 진행됨에 따라 학습에 기여하는 패턴영역이 달라지는 현상에 효과적으로 대응하지 못하는 문제가 있다. 이 문제에 대해 본 논문에서는 패턴의 기여도에 따라 가변 하는 학습률과 학습에 기여하는 패턴만을 학습에 반영하는 패턴별 가변 학습률 및 학습생략 (COIL: Changing rate and Omitting patterns in Instant Learning)방법을 제안한다. 제안한 COIL의 성능을 입증하기 위해 화자증명과 음성인식을 실험하고 그 결과를 제시한다.
JPEG2000[1][2]은 DWT(Discrete Wavelet Transform)[3] 변환을 기반으로 하는 이미지의 새로운 표준으로 오류가 빈번히 발생하는 네트워크상의 전송을 위한 오류 제어 기법들을 제공한다. JPEG2000에서 제공하는 오류 제어 기법은 스트림 내에서 오류를 발견하고 오류 전파를 제어하지만, 손실된 웨이블릿 계수를 복원하지는 못한다. 본 논문에서는 DWT 변환 후 각 부대역 및 이웃의 상호 연관성을 이용하여 오류로 인해 손실된 웨이블릿 계수를 효과적으로 예측하여 이미지의 화질을 향상시키는 오류 은닉 기법을 제안한다. 제안된 기법의 성능을 무선네트워크 환경에서 모의 실험한 결과 기존의 오류 제어 기법보다 성능이 뛰어났고 특히 이미지 내의 변화가 적은 경우 부대역 및 이웃 웨이블릿 계수의 상호 연관성이 크므로 더욱 효과적인 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.