최근 교통상황을 정확하게 관측할 수 있는 교통류 검지에 관한 기술개발과 더불어 개별차량 주행궤적을 이용한 교통안전도 평가기법에 대한 관심이 높아지고 있다. 본 연구에서는 개별차량의 주행궤적을 이용하여 다음시점(t+1) 의 후미추돌 확률을 산출하는 방법론을 제시하였다. 신뢰성 있는 예측 기법인 칼만 필터링(Kalman Filtering)을 이용하여 주행궤적을 예측하고, 예측된 시점에 대한 개별차량의 후미추돌 확률을 산출하였다. 안전도를 평가하는 확률모형을 수립하기 위해서 서해안 고속도로의 동영상 자료로부터 개별차량의 주행궤적을 추출하였다. 추출한 개별차량의 주행궤적 자료를 이항 로지스틱 회귀분석(Binary logistic regression)을 이용하여 차량의 차로변경 결정 확률 모형을 생성하였고, exponential decay function을 이용하여 surrogate safety measure(SSM)의 하나인 time-to-collision(TTC)기반의 추돌확률 모형을 생성하였다. 미시적 교통류 시뮬레이터인 VISSIM에서 추출한 개별차량의 주행궤적 데이터를 이용하여 제안된 방법론을 평가하였다. 본 연구의 결과는 교통류 감시, 제어 및 정보 시스템에 효과적으로 적용될 수 있으며, 나아가 교통사고 예방에 효율적인 대안이 될 수 있을 것으로 판단된다.
고속철도 교량은 열차 하중에 의한 공진으로 인한 동적응답 증폭의 위험이 존재하므로 설계기준에 따른 동적해석을 통한 주행안전성 및 승차감 검토를 반드시 수행하여야 한다. 그러나 주행안전성 및 승차감 산정 절차는 열차의 종류별로 임계속도를 포함하여 설계속도의 110km/h까지 10km/h 간격으로 동적해석을 일일이 수행해야 하므로 많은 시간과 경비가 소요된다. 이 연구에서는 딥러닝 알고리즘을 활용하여 별도의 동적해석 없이 주행안전성 및 승차감을 사전에 예측할 수 있는 딥러닝 기반 예측 시스템 개발하였다. 제안된 시스템은 철도교량의 열차별, 속도별 동적해석 결과를 학습한 후 학습 완료된 신경망을 기반으로 한 예측 시스템이며, 열차속도, 교량 특성 등의 입력파라미터에 따른 주행안전성 및 승차감 산정 결과를 사전에 예측할 수 있다. 제안된 시스템의 성능을 확인하기 위하여 단경간 직선 단순보 교량을 대상으로 한 주행안전성 및 승차감 예측을 수행하였고, 주행안전성 및 승차감 산정을 위한 상판 연직변위 및 상판 연직가속도를 높은 정확도로 예측할 수 있음을 확인하였다.
본 논문에서는 무인자동차의 자율주행을 위한 알고리즘을 제시하고 3차원 그래픽 시뮬레이션을 통하여 안정성 기반 자율주행 알고리즘의 성능을 검증하고자 한다. 제안된 자율주행 알고리즘은 주변 인접 차량의 위치, 속도, 가속도, 주행 차로 정보를 바탕으로 자율주행 차량과의 충돌가능성 및 충돌예측시간을 계산하여 최적의 안정 주로를 선택하고 이러한 주행 차로에 대한 주행 궤적을 생성하여 추종토록 함으로써 자율주행이 이루어지도록 한다. 본 논문에서는 제안된 자율주행 알고리즘을 검증하기 위하여 3차원 그래픽 시뮬레이션 환경을 구축하였으며 다차로, 다차량 주행 환경에서 몇 가지 가상 도로 환경을 구축하여 시뮬레이션 하였고 자율주행 차량의주행 궤적을 인접 주행차량의 주행 궤적과 비교 확인함으로써 알고리즘의 타당성을 검증하였다. 시뮬레이션 결과 제시된 안정성 기반 자율주행 알고리즘은 다차로, 다차량 주행 환경에서 주변 차량과 충돌 없이 안정적인주행 성능을 보여주는 것을 확인할 수 있었다.
최근 급격한 변화를 겪고 있는 자율주행 자동차 분야의 미래 기술 및 시장 전망 예측에 대한 요구와 관심이 집중되고 있다. 자동차 산업의 특성상, 복합적 요인의 상관관계가 미치는 영향력이 크고 요인 간의 복잡도가 높으므로, 체계적인 미래 예측 방법론 적용을 통한 미래 전망분석 및 전략 수립이 시급하다. 본 연구에서는 자동차 분야에 적합한 미래 예측 방법론 중 필드 변칙 완화기법(Field Anomaly Relaxation)과 다중관점 개념 기법(Multiple Perspective Concept)을 복합적으로 적용하여, 자율주행 자동차 분야의 핵심기술 및 산업 동향에 관한 미래 시나리오들을 개발하여 실증하였다. 도출된 3개의 시나리오는 전문가 평가 체크리스트를 통하여 타당성을 검증하였다. 본 연구 결과는 자율주행 자동차 산업과 같은 다양한 변동성이 존재하는 분야의 미래 예측 방법 중 한 가지로 적용될 수 있다는 점에 의의가 있다.
비선형 임계속도를 주행시험대를 이용하여 측정하였으며 비선형 임계속도가 관성에 의한 과도 현상이 아님을 확인하기 위하여 주행속도를 연속 그리고 불연속적으로 감가속 하면서 선형 및 비선형 임계속도를 측정하였다. 또한 차량의 안정성을 간편하게 예측할 때 대차모델만을 사용하던 종래의 방법이 타당한지 확인하였으며 차량의 임계속도와 응답주파수를 예측하기 위하여 산업체에서 사용되던 간편 식들의 정확성을 검토한 결과 다음의 결과를 도출할 수 있었다. (중략)
운전자가 필요없는 완전한 자율주행 시대에 있어, 자율주행 차량에 탑승한 사람의 상황인지 측면에서 불안감을 예측하고 이를 저감하는 방법은 매우 중요하다. 본 논문에서는 탑승자의 불안감을 유발시키는 자율주행 환경 요인으로 도로 환경, 차량의 내·외부 환경, 자율주행 제어 환경의 3가지 요소가 도출되었고, 각 요소에서 탑승자의 불안감을 유발시키는 세부 요인들을 도출하여 분석하였다.
레이다는 자율주행 차에 있어 필수적인 센서 부품으로, 레이다가 활용되는 시장은 점차 커지고 있으며 제품 종류도 다양해지고 있다. 본 연구에서는 평가 공정에서부터 레이다의 불량 여부를 예측해 자율주행의 안정성과 효율성을 높일 수 있도록 성능 예측 모델을 구축하고 평가하였다. 레이더 공정 과정의 39607개 입력 데이터로 모델을 학습하였으며, 결과적으로 17개 모델을 스태킹 앙상블했을 때 Meta Ridge 모델이 가장 높은 학습률을 나타내는 것을 확인하였다. 이러한 연구 결과가 제품의 불량을 공정 단계에서 우선 예측해 수율을 극대화하고 불량으로 인한 제품 폐기 비용을 감축하는 데 도움이 될 것으로 기대 한다.
최근에 자율주행자동차에 대해 매우 활발한 연구와 개발이 진행되고 있다. 자율주행자동차를 구현하기 위해서는 매우 많은 기술들이 융복합적으로 해결되어야 한다. 이를 위해 차량에 장착된 블랙박스는 단순히 녹화기능 뿐만 아니라 신호등인식, 보행자검출, 정지선인식 등과 같이 자율주행차량을 구현하기 위한 핵심적인 기능을 제공할 수 있어 많은 연구 대상이 되고 있다. 따라서 자율주행차량을 구현하기 위한 한 가지 접근방법으로서 본 논문에서는 차량에 장착된 블랙박스 카메라를 이용하여 도로상에 위치한 거리를 효과적으로 예측할 수 있는 수식적인 모델을 제시한다. 제안한 모델은 도로의 기준선과 관찰선의 폭 또는 블랙박스 장착 높이 정보만을 이용함으로써 실제 도로상의 거리를 예측하는데 효과적으로 활용할 수 있음을 보인다. 다양한 실험을 통하여 본 논문에서 제안한 도로상의 거리 예측 모델이 타당함을 보인다.
본 연구는 시각-관성 기반의 딥러닝 학습으로 자유분방하게 움직이는 드론의 주행기록을 정확하게 추정하는 것을 목표로 한다. 드론의 비행주행은 드론의 온보드 센서와 조정값을 이용하는 것이 일반적이다. 본 연구에서는 이 온보드 센서 데이터를 학습에 사용하여 비행주행의 위치추정을 실험하였다. 선행연구로써 DeepVO[1]룰 구현하여 KITTI[3] 데이터와 Midair[4] 데이터를 비교, 분석하였다. 3D 좌표면에서의 위치 추정에 선행연구 모델의 한계가 있음을 확인하고 IMU를 Feature로써 사용하였다. 본 모델은 FlowNet[2]을 모방한 CNN 네트워크로부터 Optical Flow Feature에 IMU 데이터를 더해 RNN으로 학습을 진행하였다. 본 연구를 통해 주행기록 예측을 다소 정확히 했다고 할 수 없지만, IMU Feature를 통해 주행기록의 예측이 가능함을 볼 수 있었다. 본 연구를 통해 시각-관성 분야에서 사람의 지식이나 조정이 들어가는 센서를 융합하는 기존의 방식에서 사람의 제어가 들어가지 않는 End-to-End 방식으로 인공지능을 학습했다. 또한, 시각과 관성 데이터를 통해 주행기록을 추정할 수 있었고 시각적으로 그래프를 그려 정답과 얼마나 차이 있는지 확인해보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.